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EXTENDED ABSTRACT 

This paper determines the properties of mechanistic and data-based models in population 
biology side by side. The mechanistic modeling approach starts from mechanisms assumed to 
take part in the process under study. For instance, a predator-prey model in continuous time 
may be written as follows, 

x = rx(I - x)- a:ry /(I+ abx) 
y = -& + amxy /(I+ abx) 

The first term in the first equation describes growth, natural death, and competition, the 
second term describes predation. In the second equation, the second term describes the 
conversion of prey biomass into predator biomass, whereas the first term describes natural 
death of the predator population. Each tenn in the equations can thus be interpreted as a 
model of each mechanism that is taken into account The different tenns have been justified 
with various successes, and the second term in the first equation has that far the most 
compelling mechanistic explanation [I], The mechanistic justification of the first term of the 
first equation has, on the other hand been called into question [2]. 

Differential equation models has an advantage over discrete time models in population 
dynamics [3, 4] in that on an infinite-decimal time-scale, the different processes tend to 
operate independently, so that we can take into account more processes and build up larger 
models by adding more terms to the models [5], Consider, for instance, the discrete predator
prey model [6], 

X' /JX exp(-Y )
= 

I - exp(-Y )
l + X 

y 

Y' = MX(l- exp(-Y)) 

Here the different processes do not operate independently, because the predation process (in 
the first equation described by the factor exp(-Y ) )  removes individuals from the prey 

population, which relaxes the competition process ( described by the factor 1 /(I+ X) ).
Therefore, the denominator in the first equation becomes complicated and this puts limits on 
how far we can proceed when formulating population models in discrete time [6, 7], 

We shall restrict this study to one dimensional discrete population models, since in this case 
there exist a theory of their generic dynamical properties [8]. In many cases, resources are 
used by individuals who do not obtain enough resources for reproduction, which causes a 
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decrease of population size [9) and therefore a large class of one-dimensional population 

models possess humped right hand sides. 

The mechanistic model under study in this paper is the Sheperd model, which describes the 

growth of a single species population under non-linear intra-specific competition 

corresponding to a humped right hand side [ 4). As predicted by May and Oster [ I OJ and 

Devaney [8) such models undergo the period-doubling route to chaos in many cases. It is no 

difference if we select another model to describe the nonlinear competition mechanisms, in 

most cases the same bifurcations will happen if the growth rate parameter is increased [8). 

The reason for restricting this first study to single species models is that there exists 

sufficiently general theory for how many periodic attractors such maps may have [ I I). In fact, 

it turns out that the considered cases do not possess more than at most one periodic attractor. 

When ecological data are collected, the map describing the nonlinear mechanisms is hardly 

available, and we may call into question whether such a correct model even exists [ I 2). In 

order to select an appropriate model, different approaches have been developed and most 

attempts use least squares selection or likelihood methods combined with some procedure that 

penalizes the number of parameters used in the model. One well-known procedure is cross
validation (CV) that essentially trains the model to predict data left out (13]. Each data point 

in the material is left out from the data material after each other and the remaining data are 

used for selecting the model that predicts the data point that was left out. Generalized cross

validation (GCV) were used for many decades instead of cross-validation in order to correct 
for outliers a save computation efforts [14). Related statistical methods are the Akaike 

information criterion AIC [ 15) and its modifications [ I 6). These methods possess cross

validation properties, too, but the idea with those methods is to find a model that is as close as 

possible to the correct model if such a model exists. 

Recently, Lindstrom and Thunberg [ 17) stressed that the generic dynamical properties of 

typical maps fitted to data differ from those of maps usually accepted for mechanistic 

modelling. In fact, the simplest nonlinear models used in statistical data analysis (continuous 

TAR(!) models) do not possess period-doublings at all, so their build-up of complicated 

dynamics is entirely different from the generic bifurcation routes in the mechanistic modelling 

approach [8, 17). Yet, in one-dimension they still possess at most one periodic attractor for 

each parameter value and this property agrees with the corresponding property for many 

mechanistic single species models. The objective of this paper is to elucidate the relation 

between the dynamics of mechanistic models and the dynamics of commonly used statistical 

models fitted to their data. We explore this relationship in the noise-free limit simply because 

the relationship tends to be most easy to understand in this case. This is most evident in the 

case when the dynamics of the mechanistic model corresponds to a fixed point. If a line is 

fitted to this data-point it describes the fixed point equally well regardless of which slope is 

selected. If a small amount of noise is added, the slope of the line agrees reasonably well with 

the slope of the mechanistic map at the fixed point. We show that the dynamics of continuous 
TAR (I )-models can describe the dynamics of the mechanistic Sheperd map close to its 

attractor as long as the mechanistic map possesses either a fixed point or a periodic attractor 

of period two and that AIC can select perfectly between fixed point cases and two-periodic 

cases in the noise free limit. Outside this regime AIC cannot select a TAR model describing 

the deterministic dynamics correctly in the noise-free limit. If three- or four-periodic attractors 

are to be described, there are many cases described by corresponding three- or four-periodic 

T AR-repellers, respectively, and chaotic TAR-attractors. 
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We continue by analyzing the results obtained when titting a Ricker [ 18] model to the 

Sheperd data. The Ricker model belongs to the class of mechanistic models that have negative 

Schwartzian derivative, possessing a unique attractor, and undergo the period doubling route 

to chaos. There is therefore some hope that titting this false nonlinear model to the Sheperd 

data could recapitulate the dyn amic patterns of the true nonlinear Sheperd model. But in fact, 

it turns out that this model is able to follow the dynamic behavior of the Sheperd model only 

up to its second period doubling bifurcation. According to information theoretic criteria, a 

slightly false nonlinear model is far behind the AR-TAR approach. Therefore, we cannot 

expect that we are able to get any other result than that AR-TAR models describe data best 

unless we have included the correct nonlinear model in the model set, which cannot be 

assumed. 

We close this study by fitting broken line models with a possibly large number breakpoints to 

the Sheperd data. These models are Multivariate Adaptive Regression Spline (MARS) models 

[19] and they are ranked in this study by the GCV criterion. These maps should have enough 
flexibility to be able to estimate the derivatives and location at an arbitrary periodic solution, 

but since a limit amount of data is assumed, this will not be the case. The qualitative 

dynamical properties of these models are not fully known and we cannot, for instance, 

guarantee these models to have at most one periodic attractor, as were the case with the AR 

and TAR models. Our study indicates that the switching behavior reported for the AR-TAR 

approach is still present and remain a good explanation for what happens when attempting to 

estimate data from mechanistic models with models highly ranked through criteria like AIC 

or GCY. On the other hand it is impossible to recover the underlying mechanisms by use of 

linear (AR) models since they possess unrealistic ecological properties like unbounded per 

capita population growth rates (20] and these problems are not removed by use of TAR 

models. We can therefore, in general, never expect that models titted to data describes 

dynamical properties or the underlying mechanisms of governed by the underlying true 

mechanistic model adequately. However, attempting to fit a slightly false nonlinear model 

that possesses the same bifurcation sequence as the mechanistic model to data does even 

worse. 
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