REMOVAL OF VOCS FROM AIR – CIRCULAR ECONOMY APPROACH

Piotr Rybarczyk¹

¹⁾ Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Poland

Abstract

Biotrickling filtration is an approved technology for the removal of volatile pollutants from air, especially volatile organic compounds (VOCs). Biotrickling filtration consists in passing of a polluted gas through a packed layer of inert materials, inoculated either with selected microorganisms. These microbes form a biofilm over the packing elements and the packed bed is trickled with a liquid, containing mineral salts. The air pollutants serve as energy (carbon) source for microorganisms and undergo biodegradation in the biofilm. As a result, clean air leaves the biofilter. Biotrickling filtration is regarded as a sustainable air treatment method, however its potential is still discovered and developed. An interesting solution is proposed to design a biofilter to work as a microbial fuel cell. In such a configuration, it is possible to treat waste air and produce electric energy in one time. Additionally, in order to meet the requirements of circular economy and zero waste approaches, a waste trickling liquid is proposed to be valorized as an additive to the substrates for plant cultivation. In such a way, biotrickling filtration can be profitably combined with other processes, e.g. phytoremediation of polluted soils. A brief overview is presented on the current research issues in biotrickling filtration and its coupling with microbial fuel cells.

Keywords: biotrickling filtration, waste air, energy, plants, circular economy

© 2022 Author/s. This is an Open Access abstract distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ISBN: 978-91-89460-85-0