Impacts of leachate flow conditions on the duration of the aftercare period

Authors

  • Johann Fellner Linnéuniversitetet
  • Gernot Döberl Linnéuniversitetet
  • Paul H Brunner Linnéuniversitetet

DOI:

https://doi.org/10.15626/Eco-Tech.2003.035

Keywords:

Landfill leachate; Water flow modelling; Salt emissions; Aftercare period; Landfill cover; Flushing.

Abstract

The environmental impacts of deposited MSW are mainly associated with the emissions
of leachate and biogas. While biogas emissions will become negligible within decades,
leachate emissions will stay on an environmental incompatible level for hundreds of
years, calculated under simplified assumptions. The generation of leachate from MSW
landfills is determined by the waste input, the climatic conditions and the landfill
construction and operation. In this paper the impacts of different construction (landfill
cover) and operation strategies (recirculation or flushing) on the duration of landfill
aftercare (in particular leachate treatment) are evaluated. Therefore a mathematical water
flow and solute transport model which has been successfully calibrated at full scale
landfills is used. The results indicate that the stabilization process of MSW landfills is
mostly determined by the internal flow conditions and that operation strategies have less
impact. Only the warranty of "homogeneous" water flow allows sufficient operation of
strategies for accelerated stabilization ofMSW landfills.

Metrics

Metrics Loading ...

References

Allgaier, G., 2003. Development of a New Risk Assessment Model for Small Old Landfills. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula.

Baumann, T. and Schneider, M., 1998. Dynamik des Wasserhaushaltes von Hausmtilldeponien. EntsorgungsPraxis(3/98)a: 45-49.

Beaven, R.P. and Walker, A.N., 1997. Evaluation of the total potential load of MSW. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 97, Sixth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula, pp. 57-71

Belevi, H. and Baccini, P., 1989. Long-Term Behaviour of Municipal Solid Waste Landfills. Waste Management & Research, 7: 43-56. https://doi.org/10.1016/0734-242X(89)90007-4

Bendz, D., 1998. Generation of leachate and the flow regime in landfills. AFRreport 191, Lund, 27 s. pp.

Bogner, J. and Spokas, K., 1993. Landfill CH4: Rates, fates, and role in global carbon cycle. Chemosphere, 26(1-4): 369-386. https://doi.org/10.1016/0045-6535(93)90432-5

Christensen, T.H., Kjeldsen, P. and Lindhardt, B., 1996. Gas-generating processes in landfills. In: R.C.a.R.S. T.H. Christensen (Editor), Landfilling of waste: biogas. E&FN Spon, London.

Doberl, G., Huber, R., Fellner, J. and Brunner, P.H., 2003. The Heterogeinity of Waste as a Main Factor Influencing the Future Emission Potential of MSW

Landfills - A Case Study on the Breitenau-Landfill in Austria. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula.

Doberl, G., Huber, R., Fellner, J., Cencic, 0. and Brunner, P.H., 2002. Neue Strategien zur Nachsorge von Deponien und zur Sanierung von Altlasten (Projekt STRANDEZA), Abteilung Abfallwirtschaft und Stoffhaushalt, Technische Universitat Wien.

Ehrig, H.J. and Krtimpelbeck, I., 2001. The Emission Behaviour of Old Landfills in the Aftercare Phase. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2001, Eigth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula, pp. 313-323.

Fellner, J., Huber, R., Doberl, G. and Brunner, P.H., 2003. Hydraulics of MSW landfills and its implications for water flow modelling. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula.

Klink, R.E. and Ham, R.K., 1982. Effects of moisture movement on methane production in solid waste landfill samples. Resources and Conservation, 8(1): 29-41. https://doi.org/10.1016/0166-3097(82)90051-7

Knox, K., 2001. New strategies needed? The pros and cons of landfill covering, Weiterbildungsseminar Deponietechnik. Institut fiir Wassergiite und Abfallwirtschaft, Technische Universitiit Wien, Wien.

Riehl-Herwirsch, G. et al., 1995. Hausmiillversuchsanlage Breitenau - Untersuchungen zum quantitativen und quaJitativen Wasserhaushalt 1986- 1991, Bundesministerium fiir Land- und Forstwirtschaft, Vienna.

Rosqvist, H., Bendz, D., Oman, C. and Meijer, J.-E., 1997. Water Flow in a Pilot Scale Landfill. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia I 997, Sixth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula.

Rosqvist, H. and Destouni, G., 2000. Solute transport through preferential pathways in municipal solid waste. Journal ofContaminant Hydrology, 46(1-2): 39-60. https://doi.org/10.1016/S0169-7722(00)00127-3

Rosqvist, H., Rohrs, L. and Fourie, A., 200 1. Water Balance and Solute Transport Studies in Three Experimental Solid Waste Columns. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2001, Eighth International Waste Management and Landfill Symposium. CISA, S. Margherita

di Pula, pp. 655-664.

Simunek, J., Sejna, M. and van Genuchten, M.T., 1996. The HYDRUS_2D Software Package for Simulating Water Flow and Solute Transport in Two Dimensional Variably Saturated Media. Version 1.0., U.S. Department of Agriculture Riverside, California

Stegmann, R., 1995. Langfristiges Gefiihrdungspotential und Deponieverhalten von Ablagerungen, Statusseminar Deponiekorper. BMBF, Wuppertal.

Zeiss, C. and Major, W., 1993. Moisture Flow through Municipal Solid Waste: Pattern and Characteristics. Journal of Environmental Systems, 22(3)a: 211-232. https://doi.org/10.2190/kbud-rfht-jyhp-a35e

Downloads

Published

2019-06-27