The Impact of Changing Environmental Conditions on the Retention of Heavy Metals Adsorbed by Pine Bark
DOI:
https://doi.org/10.15626/Eco-Tech.2010.029Keywords:
Pine bark; Urea; Heavy metals; Adsorption; LeachingAbstract
Landfills are widely used for the disposal of households' and industrial waste. Liquid landfill effluents contain heavy metals, are toxic to humans and ecosystems and have to be efficiently treated. One treatment option that is becoming popular is the reactive filter technology. The total efficiency of metal removal by a filter media greatly depends not only on adsorption itself, but also on the metal leaching from the adsorbent. The last parameter, in turn, may be dependant on changing environmental conditions since filters are usually located on open air and flow of contaminated water (landfill leachate, runoff water) has the intermittent nature. A filter material may dry, become frozen or stay wet, depending on a season. Previously adsorbed metals can leach from an adsorbent at the next flash of water, coming to water treatment facilities. Among others, pine bark has shown a high capacity to adsorb heavy metals from landfill leachates. In this study, pine bark has been pre-treated with urea-solution in order to increase its stability and adsorption properties. Within leaching experiments using either non-treated or pre-treated bark samples no significant influence of the changing environmental conditions on the extent of metal leaching was observed, though in most cases, metal leaching from wet bark samples exposed to freezing was somewhat higher. Zn leaching was the highest and Cu leaching the lowest for both NTB and UTB samples. The metal leaching from non-treated bark was several-fold higher compared to urea-treated bark. Possible mechanisms of barkurea interactions and reasons for enhanced metals adsorption by urea-modified bark are discussed.