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Abstract

Selection for statistical significance is a well-known factor that distorts the published literature and challenges the
cumulative progress in science. Recent replication failures have fueled concerns that many published results are
false-positives. Brunner and Schimmack (2020) developed z-curve, a method for estimating the expected replica-
tion rate (ERR) - the predicted success rate of exact replication studies based on the mean power after selection for
significance. This article introduces an extension of this method, z-curve 2.0. The main extension is an estimate
of the expected discovery rate (EDR) — the estimate of a proportion that the reported statistically significant results
constitute from all conducted statistical tests. This information can be used to detect and quantify the amount
of selection bias by comparing the EDR to the observed discovery rate (ODR; observed proportion of statistically
significant results). In addition, we examined the performance of bootstrapped confidence intervals in simulation
studies. Based on these results, we created robust confidence intervals with good coverage across a wide range of
scenarios to provide information about the uncertainty in EDR and ERR estimates. We implemented the method in
the zcurve R package (Barto$ & Schimmack, 2020).

Keywords: Publication Bias, Selection Bias, Expected Replication Rate, Expected Discovery Rate, File-Drawer, Power,
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It has been known for decades that the published
record in scientific journals is not representative of all
studies that are conducted. For a number of reasons,
most published studies are selected because they re-
ported a theoretically interesting result that is statis-
tically significant; p < .05 (Rosenthal & Gaito, 1964;
Scheel et al., 2021; Sterling, 1959; Sterling et al.,
1995). This selective publishing of statistically signifi-
cant results introduces a bias in the published literature.
At the very least, published effect sizes are inflated. In
the most extreme cases, a false-positive result is sup-

ported by a large number of statistically significant re-
sults (Rosenthal, 1979).

Some sciences (e.g., experimental psychology) tried
to reduce the risk of false-positive results by demanding
replication studies in multiple-study articles (c.f., Weg-
ner, 1992). However, internal replication studies pro-
vided a false sense of replicability because researchers
used questionable research practices to produce suc-
cessful internal replications (Francis, 2014; John et al.,
2012; Schimmack, 2012). The pervasive presence of
publication bias at least partially explains replication
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failures in social psychology (Open Science Collabo-
ration, 2015; Pashler & Wagenmakers, 2012; Schim-
mack, 2020; Schimmack, 2012) medicine (Begley & El-
lis, 2012; Prinz et al., 2011), and economics (Camerer
et al., 2016; Chang & Li, 2015).

In meta-analyses, the problem of publication bias is
usually addressed by one of the different methods for
its detection and a subsequent adjustment of effect size
estimates. However, many of them (Egger et al., 1997,
Ioannidis & Trikalinos, 2007; Schimmack, 2012) per-
form poorly under conditions of heterogeneity (Renke-
witz & Keiner, 2019), whereas others employ a meta-
analytic model assuming that the studies are conducted
on a single phenomenon (e.g., Hedges, 1992; Maier et
al., 2022; Vevea & Hedges, 1995). Moreover, while the
aforementioned methods test for publication bias (re-
turn a p-value or a Bayes factor), they usually do not
provide a quantitative estimate of selection bias. An
exception would be the publication probabilities/ratios
estimates from selection models (e.g., Hedges, 1992).
Maximum likelihood selection models work well when
the distribution of effect sizes is consistent with model
assumptions, but can be biased when the distribution
when the actual distribution does not match the ex-
pected distribution (e.g., Brunner & Schimmack, 2020;
Hedges, 1992; Vevea & Hedges, 1995). Brunner and
Schimmack (2020) introduced a new method that does
not require a priori assumption about the distribution
of effect sizes. The z-curve method uses a finite mix-
ture model to correct for selection bias. We extended
z-curve to also provide information about the amount
of selection bias. To distinguish between the new and
old z-curve methods, we refer to the old z-curve as z-
curve 1.0 and the new z-curve as z-curve 2.0. Z-curve
2.0 has been implemented in the open statistic program
R as the zcurve package that can be downloaded from
CRAN (Barto$ & Schimmack, 2020).

Before we introduce z-curve 2.0, we would like to
introduce some key statistical terms. We assume that
readers are familiar with the basic concepts of sta-
tistical significance testing; normal distribution, null-
hypothesis, alpha, type-I error, and false-positive result
(see Barto$ & Maier, In press, for discussion of some of
those concepts and their relation).

Glossary

Power is defined as the long-run relative frequency of
statistically significant results in a series of exact repli-
cation studies with the same sample size when the null-
hypothesis is false. For example, in a study with two
groups (n = 50), a population effect size of Cohen’s
d = 0.4 has 50.8% power to produce a statistically signif-
icant result. Thus, 100 replications of this study are ex-

pected to produce approximately 50 statistically signifi-
cant results. The actual frequency will approach 50.8%
as the study is repeated infinitely.

Unconditional power extends the concept of power
to studies where the null-hypothesis is true. Typically,
power is a conditional probability assuming a non-zero
effect size (i.e., the null-hypothesis is false). However,
the long-run relative frequency of statistically signifi-
cant results is also known when the null-hypothesis is
true. In this case, the long-run relative frequency is de-
termined by the significance criterion, alpha. With al-
pha = 5%, we expect that 5 out of 100 studies will pro-
duce a statistically significant result. We use the term
unconditional power to refer to the long-run frequency
of statistically significant results without conditioning
on a true effect. When the effect size is zero and alpha
is 5%, unconditional power is 5%. As we only consider
unconditional power in this article, we will use the term
power to refer to unconditional power, just like Canadi-
ans use the term hockey to refer to ice hockey.

Mean (unconditional) power is a summary statistic
of studies that vary in power. Mean power is simply the
arithmetic mean of the power of individual studies. For
example, two studies with power = 0.4 and power =
0.6, have a mean power of 0.5.

Discovery rate is a relative frequency of statistically
significant results. Following Sori¢ (1989), we call sta-
tistically significant results discoveries. For example, if
100 studies produce 36 statistically significant results,
the discovery rate is 36%. Importantly, the discovery
rate does not distinguish between true or false discover-
ies. If only false-positive results were reported, the dis-
covery rate would be 100%, but none of the discoveries
would reflect a true effect (Rosenthal, 1979).

Selection bias is a process that favors the publica-
tion of statistically significant results. Consequently, the
published literature has a higher percentage of statis-
tically significant results than was among the actually
conducted studies. It results from significance testing
that creates two classes of studies separated by the sig-
nificance criterion alpha. Those with a statistically sig-
nificant result, p < .05, where the null-hypothesis is re-
jected, and those with a statistically non-significant re-
sult, where the null-hypothesis is not rejected, p > .05.
Selection for statistical significance limits the popula-
tion of all studies that were conducted to the popula-
tion of studies with statistically significant results. For
example, if two studies produce p-values of .20 and .01,
only the study with the p-value .01 is retained. Selection
bias is often called publication bias. Studies show that
authors are more likely to submit findings for publica-
tion when the results are statistically significant (Franco
et al., 2014)



Observed discovery rate (ODR) is the percentage of
statistically significant results in an observed set of stud-
ies. For example, if 100 published studies have 80 sta-
tistically significant results, the observed discovery rate
is 80%. The observed discovery rate is higher than the
true discovery rate when selection bias is present.

Expected discovery rate (EDR) is the mean power
before selection for significance; in other words, the
mean power of all conducted studies with statistically
significant and non-significant results. As power is the
long-run relative frequency of statistically significant re-
sults, the mean power before selection for significance
is the expected relative frequency of statistically signif-
icant results. As we call statistically significant results
discoveries, we refer to the expected percentage of sta-
tistically significant results as the expected discovery
rate. For example, if we have two studies with power of
0.05 and 0.95, we are expecting 1 statistically significant
result and an EDR of 50%, (0.95 + 0.05)/2 = 0.50.

Expected replication rate (ERR) is the mean power
after selection for significance, in other words, the mean
power of only the statistically significant studies. Fur-
thermore, since most people would declare a replica-
tion successful only if it produces a result in the same
direction, we base ERR on the power to obtain a sta-
tistically significant result in the same direction. Us-
ing the prior example, we assume that the study with
5% power produced a statistically non-significant re-
sult and the study with 95% power produced a statis-
tically significant result. In this case, we end up with
only one statistically significant result with 95% power.
Subsequently, the mean power after selection for signif-
icance is 95% (there is almost zero chance that a study
with 95% power would produce replication with an out-
come in the opposite direction). Based on this estimate,
we would predict that 95% of exact replications of this
study with the same sample size, and therefore with
95% power, will be statistically significant in the same
direction.

As mean power after selection for significance pre-
dicts the relative frequency of statistically significant re-
sults in replication studies, we call it the expected repli-
cation rate. The ERR also corresponds to the “aggregate
replication probability” discussed by Miller (2009).

Numerical Example

Before introducing the formal model, we illustrate
the concepts with a fictional example. In the exam-
ple, researchers test 100 true hypotheses with 100%
power (i.e., every test of a true hypothesis produces
p < .05) and 100 false hypotheses (H, is true) with
5% power which is determined by alpha = .05. Conse-
quently, the researchers obtain 100 true positive results
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and 5 false-positive results, for a total of 105 statisti-
cally significant results. The expected discovery rate is
(1 100 +0.05 100)/(100 + 100) = 105/200 = 52.5%
which corresponds to the observed discovery rate when
all conducted studies are reported.

So far, we have assumed that there is no selection
bias. However, let us now assume that 50 of the 95
statistically non-significant results are not reported. In
this case, the observed discovery rate increased from
105/200 to 105/150 = 70%. The discrepancy between
the EDR, 52.5%, and the ODR, 70%, provides quantita-
tive information about the amount of selection bias.

As shown, the EDR provides valuable information
about the typical power of studies and about the pres-
ence of selection bias. However, it does not provide in-
formation about the replicability of the statistically sig-
nificant results. The reason is that studies with higher
power are more likely to produce a statistically sig-
nificant result in replications (Brunner & Schimmack,
2020; Miller, 2009). The main purpose of z-curve 1.0
was to estimate the mean power after selection for sig-
nificance to predict the outcome of exact replication
studies. In the example, only 5 of the 100 false hypothe-
ses were statistically significant. In contrast, all 100 tests
of the true hypothesis were statistically significant. This
means that the mean power after selection for signifi-
cance is (5 0.025+ 100 1)/(5+ 100) = 100.125/105
95.4%, which is the expected replication rate.

Formal Introduction

Unfortunately, there is no standard symbol for power,
which is usually denoted as 1 3, with 8 being the prob-
ability of a type-II error. We propose to use epsilon, ¢, as
a Greek symbol for power because one Greek word for
power starts with this letter (e£ovowa). We further add
subscript 1 or 2, depending on whether the direction of
the outcome is relevant or not. Therefore, € denotes
power of a study regardless of the direction of the out-
come and ¢ denotes power of a study in a specified
direction.

The EDR,

Py
k=1 €2k
EDR = _T’, D

is defined as the mean power (e;) of a set of K stud-
ies, independent on the outcome direction. Following
Brunner and Schimmack (2020), the expected replica-
tion rate (ERR) is defined as the ratio of mean squared
power and mean power of all studies, statistically sig-
nificant and non-significant ones. We modify the def-
inition here by taking the direction of the replication
study into account. The mean square power in the nom-
inator is used because we are computing the expected
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relative frequency of statistically significant studies pro-
duced by a set of already statistically significant stud-
ies — if a study produces a statistically significant result
with probability equal to its power, the chance that the
same study will again be significant is power squared.
The mean power in the denominator is used because
we are restricting our selection to only already statisti-
cally significant studies which are produced at the rate
corresponding to their power (see also Miller, 2009).
The ratio simplifies by omitting division by K in both
the nominator and denominator to:

PK
ERR = B2t & )
11<(=1 €k

which can also be read as a weighted mean power,
where each power is weighted by itself. The weights
originate from the fact that studies with higher power
are more likely to produce statistically significant re-
sults. The weighted mean power of all studies is there-
fore equal to the unweighted mean power of the stud-
ies selected for significance (ksig; cf. Brunner & Schim-
mack, 2020).

If we have a set of studies with the same power (e.g.,
set of exact replications with the same sample size) that
test for an effect with a z-test, the p-values converted
to z-statistics follow a normal distribution with mean g,
and a standard deviation equal to 1. Using an alpha
level «, the power is the tail area of a standard normal
distribution ( ) centered over a mean, (u,) on the left
and right side of the z-statistics corresponding to alpha,

1.96 and 1.96 (with the usual alpha = .05),

e:=1 (196 )+ (196 pu), (3

or the tail area on the right side of the z-statistics
corresponding to alpha, when we are also considering
whether the directionality of the effect,

a.=1 (196 ). 4

Two-sided p-values do not preserve the direction of
the deviation from null and we cannot know whether a
z-statistic comes from the lower or upper tail of the dis-
tribution. Therefore, we work with absolute values of
z-statistics, changing their distribution from normal to
folded normal distribution (Elandt, 1961; Leone et al.,
1961).

Figure 1 illustrates the key concepts of z-curve with
various examples. The first three density plots in the
first row show the sampling distributions for studies
with low (e = 0.3), medium (e = 0.5), and high (e = 0.8)
power, respectively. The last density plots illustrate
the distribution that is obtained for a mixture of stud-
ies with low, medium, and high power with equal fre-

quency (33.3% each). It is noteworthy that all four den-
sity distributions have different shapes. While Figure 1
illustrates how differences in power produce differences
in the shape of the distributions, z-curve works back-
ward and uses the shape of the distribution to estimate
power.

Although z-curve can be used to fit the distributions
in the first row, we assume that the observed distribu-
tion of all z-statistics is distorted by the selection bias.
Even if some statistically non-significant p-values are
reported, their distribution is subject to unknown se-
lection effects. Therefore, by default z-curve assumes
that selection bias is present and uses only the distri-
bution of statistically significant results. This changes
the distributions of z-statistics to folded normal distribu-
tions that are truncated at the z-statistic corresponding
to the significance criterion, which is typically z = 1.96
for p = .05 (two-tailed). The second row in Figure 1
shows these truncated folded normal distributions. Im-
portantly, studies with different levels of power produce
different distributions despite the truncation. The dif-
ferent shapes of truncated distributions make it possible
to estimate power by fitting a model to the truncated
distribution.

The third row of Figure 1 illustrates the EDR as a
proportion of statistically significant studies from all
conducted studies. We use Equation 3 to re-express
EDR (Equation 1), which equals the mean uncondi-
tional power, of a set of K heterogeneous studies using
the means of sampling distributions of their z-statistics,
Hz ks

P

K
k=1 €2.2.k

EDR = 5)

Z-curve makes it possible to estimate the shape of the
distribution in the region of statistically non-significant
results on the basis of the observed distribution of sta-
tistically significant results. That is, after fitting a model
to the grey area of the curve, it extrapolates the full
distribution.

The fourth row of Figure 1 visualizes a distribution of
expected z-statistics if the statistically significant studies
were to be exactly replicated (not depicting the small
proportion of results in the opposite direction than the
original, significant, result). The full line highlights the
portion of studies that would produce a statistically sig-
nificant result, with the distribution of statistically non-
significant studies drawn using the dashed line. An ex-
act replication with the same sample size of the stud-
ies in the grey area in the second row is not expected
to reproduce the truncated distribution again because
truncation is a selection process. The replication distri-
bution is not truncated and produces statistically signif-
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Figure 1. Density (y-axis) of z-statistics (x-axis) generated by studies with different powers (columns) across different
stages of the publication process (rows). The first row shows a distribution of z-statistics from z-tests homogeneous
in power (the first three columns) or by their mixture (the fourth column). The second row shows only statistically
significant z-statistics. The third row visualizes EDR as a proportion of statistically significant z-statistics out of
all z-statistics. The fourth row shows a distribution of z-statistics from exact replications of only the statistically
significant studies (dashed line for non-significant replication studies). The fifth row visualizes ERR as a proportion
of statistically significant exact replications out of statistically significant studies.

icant and non-significant results. By modeling the se-
lection process, z-curve predicts the non-truncated dis-
tributions in the fourth row from the truncated distribu-
tions in the second row.

The fifth row of Figure 1 visualizes ERR as a propor-
tion of statistically significant exact replications in the
expected direction from a set of the previously statis-
tically significant studies. The ERR (Equation 2) of a
set of heterogeneous studies can be again re-expressed
using Equations 3 and 4 with the means of sampling
distributions of their z-statistics,

PK
167 €
ERR = —fgp 2ok 1ok (6)

k=1 €2.2.k

Z-curve 2.0

Z-curve is a finite mixture model (Brunner & Schim-
mack, 2020). Finite mixture models leverage the fact
that an observed distribution of statistically significant
z-statistics is a mixture of K truncated folded normal
distribution with means y,; and standard deviations 1.
Instead of trying to estimate ., of every single observed
z-statistic, a finite mixture model approximates the ob-
served distribution based on K studies with a smaller set
of J truncated folded normal distributions, f(z; ), with
J < K components,

X
[0 = 7ifjan(z0)).
j=1

)



Each mixture component j approximates a propor-
tion of ; observed z-statistics with a probability density
function, fjfap, Of truncated folded normal distribution
with parameters ; —amean j and standard deviation
equal to 1. For example, while actual studies may vary
in power from 40% to 60%, a mixture model may rep-
resent all of these studies with a single component with
50% power.

Z-curve 1.0 used three components with varying
means. Extensive testing showed that varying means
produced poor estimates of the EDR. Therefore, we
switched to models with xed means and increased the
number of components to seven. The seven components
are equally spaced by one standard deviation fromz = 0
(power = alpha) to 6 (power 1). As power for z
statistics greater than 6 is essentially 1, it is not neces-
sary to model the distribution of z-statistics greater than
6, and all z-statistics greater than6 are assigned a power
value of 1 (Brunner & Schimmack, 2020). The power
values implied by the 7 components are0:05, 0:17, 0:50,
0:85, 0:98, 0:999 0:99997 We also tried a model with
equal spacing of power, and we tried models with fewer
or more components, but neither did improve perfor-
mance in simulation studies. We use the model parame-
ter estimates to compute the estimated EDR and ERR as
the weighted average of seven truncated folded normal
distributions centered over z= 0 to 6,

®

Curve Fitting

Z-curve 1.0 used an unorthodox approach to nd
the best tting model that required tting a truncated
kernel-density distribution to the statistically signi cant
z-statistics (Brunner & Schimmack, 2020). This is a
non-trivial step that may produce some systematic bias
in estimates. Z-curve 2.0 makes it possible to t the
model directly to the observed zstatistics using the well-
established expectation maximization (EM) algorithm
that is commonly used to t mixture models (Dempster
etal., 1977; Lee & Scott, 2012). Using the EM algorithm
has the advantage that it is a well-validated method to
t mixture models. It is beyond the scope of this article
to explain the mechanics of the EM algorithm (Bishop,
2006, e.g., ), but it is important to point out some of its
potential limitations. The main limitation is that it may
terminate the search for the best t before the best t-
ting model has been found. In order to prevent this, we

run 20 searches with randomly selected starting values
and terminate the algorithm in the rst 100iterations, or
if the criterion falls below 10 3. We then select the out-
come with the highest likelihood value and continue un-
til 1000iterations or a criterion value of 10 5is reached.
To speed up the tting process, we optimized the proce-
dure using Rcpp(Eddelbuettel & Francois, 2011).

Information about point estimates should be accom-
panied by information about uncertainty whenever pos-
sible. The most common way to do so is by providing
con dence intervals. We followed the common practice
of using bootstrapping to obtain con dence intervals for
mixture models (Ujeh et al., 2016). As bootstrapping is
a resource-intensive process, we used00 samples for
the simulation studies. Users of the z-curve package can
use more iterations to analyze actual data.

Simulations

Brunner and Schimmack (2020) compared several
methods for estimating mean power and found that z-
curve performed better than three competing methods.
However, these simulations were limited to the estima-
tion of the ERR. Here we present new simulation stud-
ies to examine the performance of z-curve as a method
to estimate the EDR as well. One simulation directly
simulated power distributions, the other one simulated
t-tests. We report the detailed results of both simulation
studies in a Supplement. For the sake of brevity, we
focus on the simulation of t-tests because readers can
more easily evaluate the realism of these simulations.
Moreover, most tests in psychology aret-tests or F-tests
and Brunner and Schimmack (2020) already showed
that the numerator degrees of freedom of F-tests do
not in uence results. Thus, the results for t-tests can
be generalized to F-tests and ztests.

The simulation was a complex4 4 4 3 3design
with 576 cells. The rst factor of the design that was
manipulated was the mean effect size with Cohen'sds
ranging from 0to 0:6 (0, 0:2, 0:4, 0:6). The second factor
in the design was heterogeneity in effect sizes was simu-
lated with a normal distribution around the mean effect
size with SDs ranging from 0 to 0:6 (0, 0:2, 0:4, 0:6).
Preliminary analysis with skewed distributions showed
no in uence of skew. The third factor of the design was
sample size for between-subject design withN = 50,
100, and 200. The fourth factor of the design was the
percentage of true null-hypotheses that ranged from0
to 60% (0%, 20%, 40%, 60%). The last factor of the
design was the number of studies with sets ofk = 100,
300 and 1;000statistically signi cant studies.

Each cell of the design was run100times for a total of
57,600 simulations. For the main effects of this design
there were 57,6004 = 14;400 or 57,6003 = 19;200



simulations. Even for two-way interaction effects, the
number of simulations is suf cient, 57,600=16 = 3;600
For higher interactions the design may be underpow-
ered to detect smaller effects. Thus, our simulation
study meets recommendations for sample sizes in simu-
lation studies for main effects and two-way interactions,
but not for more complex interaction effects (Morris et
al., 2019). The code for the simulations is accessible at
https://osf.io/r6ewt/.

Evaluation

For a comprehensive evaluation of z-curve 2.0 esti-
mates, we report bias (i.e., mean distance between esti-
mated and true values), root mean square error (RMSE;
quantifying the error variance of the estimator), and
con dence interval coverage (Morris et al., 2019). To
check the performance of the z-curve across different
simulation settings, we analyzed the results of the facto-
rial design using analyses of variance (ANOVAS) for con-
tinuous measures and logistic regression for the evalua-
tion of con dence intervals ( 0 = true value not in the
interval, 1 = true value in the interval). The analy-
sis scripts and results are accessible at https://osf.io/
réewt/.

Results

We start with the ERR because it is essentially a con-
ceptual replication study of Brunner and Schimmack
(2020) simulation studies with z-curve 1.0.

ERR. Visual inspection of the z-curves ERR esti-
mates plotted against the true ERR values did not show
any pathological behavior due to the approximation by
a nite mixture model (Figure 2).

Figure 2 shows that even with k = 100 studies, z-
curve estimates are clustered close enough to the true
values to provide useful predictions about the replica-
bility of sets of studies. Overall bias was less than
one percentage point, 0:88 (SEycmc = 0:04). This
con rms that z-curve has high large-sample accuracy
(Brunner & Schimmack, 2020). RMSE decreased from
5:14 (SEycmc = 0:03) percentage points with k = 100to
2:21 (SEycmc = 0:01) percentage points with k = 1; 000,
Thus, even with relatively small sample sizes of 100
studies, z-curve can provide useful information about
the ERR.

The Analysis of Variance (ANOVA) showed no statisti-
cally signi cant 5-way interaction or 4-way interactions.

A strong three-way interaction was found for effect size,
heterogeneity of effect sizes, and sample sizez = 9:42.
Despite the high statistical signi cance, effect sizes were
small. Out of the 36 cells of the 4 3 3 design, 32
cells showed less than one percentage point bias. Larger
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biases were found when effect sizes were large, het-
erogeneity was low, and sample sizes were small. The
largest bias was found for Cohen'sd = 0:6, SD = 0, and
N = 50. In this condition, ERR was4:41 (SEycmc = 0:11)
percentage points lower than the true replication rate.
The nding that z-curve performs worse with low het-
erogeneity replicates ndings by Brunner and Schim-
mack (2020). One reason could be that a model with
seven components can easily be biased when most pa-
rameters are zero. The xed components may also cre-
ate a problem when true power is between two xed
levels. Although a bias of 4 percentage points is not
ideal, it also does not undermine the value of a model
that has very little bias across a wide range of scenarios.

The number of studies had a two-way interaction
with effect size, z = 3:8, but bias in the 12 cells of the
4 3 design was always less than?2 percentage points.
Overall, these results con rm the fairly good large sam-
ple accuracy of the ERR estimates.

We used logistic regression to examine patterns in
the coverage of the95% con dence intervals. This time
a statistically signi cant four-way interaction emerged
for effect size, heterogeneity of effect sizes, sample size,
and the percentage of true null-hypotheses,z = 10:94.
Problems mirrored the results for bias. Coverage was
low when there were no true null-hypotheses, no het-
erogeneity in effect sizes, large effects, and small sam-
ple sizes. Coverage was only31:3% (SBucmc = 2:68)
when the percentage of true H was 0, heterogeneity of
effect sizes was0, the effect size was Cohen'sd = 0:6,
and the sample size wasN = 50.

In statistics, it is common to replace con dence in-
tervals that fail to show adequate coverage with con-
dence intervals that provide good coverage with real
data; these con dence intervals are often called robust
con dence intervals (Royall, 1996). We suspected that
low coverage was related to systematic bias. When con-
dence intervals are drawn around systematically bi-
ased estimates, they are likely to miss the true effect
size by the amount of systematic bias, when sampling
error pushes estimates in the same direction as the sys-
tematic bias. To increase coverage, it is therefore nec-
essary to take systematic bias into account. We created
robust con dence intervals by adding three percentage
points on each side. This is very conservative because
the bias analysis would suggest that only adjustment in
one direction is needed.

The logistic regression analysis still showed some sta-
tistically signi cant variation in coverage. The most no-
table nding was a 2-way interaction for effect size and
sample size,z = 4:68. However, coverage was at95%
or higher for all 12 cells of the design. Further inspec-
tion showed that the main problem remained scenarios






