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This paper introduces a statistical technique known as “posterior passing” in 
which the results of past studies can be used to inform the analyses carried out 
by subsequent studies. We first describe the technique in detail and show how 
it can be implemented by individual researchers on an experiment by experi-
ment basis. We then use a simulation to explore its success in identifying true 
parameter values compared to current statistical norms (ANOVAs and GLMMs). 
We find that posterior passing allows the true effect in the population to be 
found with greater accuracy and consistency than the other analysis types con-
sidered. Furthermore, posterior passing performs almost identically to a data 
analysis in which all data from all simulated studies are combined and analysed 
as one dataset. On this basis, we suggest that posterior passing is a viable means 
of implementing cumulative science. Furthermore, because it prevents the ac-
cumulation of large bodies of conflicting literature, it alleviates the need for tra-
ditional meta-analyses. Instead, posterior passing cumulatively and collabora-
tively provides clarity in real time as each new study is produced and is thus a 
strong candidate for a new, cumulative approach to scientific analyses and pub-
lishing.  
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The past two decades have seen a great increase 
in the study of the scientific process itself, a field 
dubbed ‘metascience’ (Munafo et al. 2017). The 
growth of this field has been driven by a series of re-
sults that question the reliability of science as it is 
currently practiced. For instance, in 2015 a global 

collaboration of scientists failed to replicate 64 of 
100 findings published in top psychology journals in 
2008 (Open Science Collaboration 2015). Given this, 
many scientists have turned their efforts towards 
identifying potential improvements to the scientific 
process. 
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A key focus within metascience is how to im-
prove the use of statistical methods and the pro-
cess of scientific publishing. Problems such as p-
hacking, “HARKing” and the “file-drawer” effect 
have been discussed in science for many years 
with mixed opinions and widespread debate (e.g. 
Bissell 2013; Bohannon 2014; Kahneman 2014; 
Schnall 2014; Fischer 2015; Pulverer 2015). Recent 
proposals such as guidelines against the mis-use 
of p-values (Wasserstein & Lazar 2016), banning 
the p-value (Trafimow & Marks 2015), statistical 
checking software (Epskamp & Nuijten, 2016), rede-
fining statistical significance (Benjamin et al., 
2018), justifying your alpha (Lakens et al., 2018), 
pre-registering methods (Chambers et al. 2014; 
van ’t Veer & Giner-Sorolla, 2016) and the Open Sci-
ence movement generally (e.g. Kidwell et al. 2016) 
are propagating discussion and endorsement of 
substantial changes to scientific publishing and 
research methods.   

One indication of the current scientific practice 
underperforming is the presence of large numbers 
of publications presenting conflicting conclusions 
about the same phenomenon. This is the case, for 
instance, in the ‘stereotype threat’ literature, in 
which experiments are designed to “activate” a neg-
ative stereotype in participants’ minds, and this 
leads to reduced performance in participants for 
which the stereotype is relevant. A common ques-
tion is whether being told that women typically per-
form worse than men at mathematical or spatial 
tasks depresses the performance of female partici-
pants on these tasks (e.g. Flore & Wicherts 2015). De-
spite the seemingly straight-forward nature of this 
question, and the publication of over 100 papers on 
this topic, there are no clear conclusions about the 
veracity of stereotype threat.  

Traditionally, meta-analyses are conducted to 
clarify the existence of a purported effect in the lit-
erature. This is also true of the stereotype threat lit-
erature, which includes seven meta-analyses (Wal-
ton & Cohen 2003; Nguyen & Ryan 2008; Walton & 
Spencer 2009; Stoet & Geary 2012; Picho, Rodriguez 
& Finnie 2013; Flore & Wicherts 2014; Doyle & Voyer 
2016). However, in many cases meta-analyses do not 
lead to increased certainty  (Ferguson 2014; Lakens 
et al., 2017; Lakens, Hilgard, & Staaks, 2016). One rea-
son is that meta-analyses are not just used to deter-
mine whether an effect truly exists but can also be 
used to reveal the underlying causes of variation 

across studies. Consequently, meta-analyses often 
differ in their interpretations of the literature, de-
pending on the specific question that the authors 
are interested in. Moreover, in some cases meta-
analyses can actually increase uncertainty. For in-
stance, they can uncover evidence of publication 
bias (as is the case with four of the stereotype threat 
meta-analyses), or researcher effects, both of which 
undermine the credibility of individual studies. More 
generally, the lack of objective inclusion criteria can 
render the conclusions of meta-analyses just as 
fraught as the results of individual studies. An exam-
ple of this is seen in the ‘cycle shift’ debate, which 
asks whether women’s mate preferences change 
over their ovulatory cycle. Here, an initial meta-
analysis argued against the existence of an effect, 
only to be followed by another meta-analysis that 
found the exact opposite to be the case 
(Gildersleeve, Haselton, & Fales, 2014a, 2014b; Wood, 
Kressel, Joshi, & Louie, 2014). Despite both being 
based on the aggregation of a large number of stud-
ies (many of which were included in both meta-anal-
yses) one meta-analysis must be wrong. Given these 
difficulties, meta-analyses do not provide an unam-
biguous solution for resolving conflicted literatures. 

Meta-analyses are not the only way to mathe-
matically combine the results of multiple studies. 
Many recent proposals fall within the category of 
“cumulative science”, a process in which each study 
incorporates prior work into its analyses. For this 
reason, each study can be considered a meta-analy-
sis of sorts, with its conclusions reflecting the data 
collected both in that study as well as prior studies. 
As such, there is no need for traditional meta-anal-
yses in a cumulative science framework. One exam-
ple of cumulative science is the use of Sequential 
Bayes Factors, which can be used to update the ex-
tent to which evidence is weighted in favour of the 
presence of an effect based on new data 
(Schönbrodt, Wagenmakers, Zehetleitner, & Peru-
gini, 2017). Similarly, ‘Curate Science’, and measures 
of replication success, have gained support (LeBel, 
Vanpaemel, Cheung, & Campbell, 2018; Zwaan, Etz, 
Lucas, & Donnellan, 2017). Here, we describe and 
test another approach to cumulative science, “pos-
terior passing”, which is a straightforward extension 
of Bayesian methods of data analysis. In what follows 
we first cover Bayesian inference, which is the the-
oretical background of posterior passing. We then 
describe how posterior passing can be implemented 
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in practice. Finally, using the case study of stereo-
type threat mentioned above, we use a simulation to 
compare the ability of traditional analytic tech-
niques and posterior passing to correctly identify 
effects of different sizes (including 0). We demon-
strate that, given a representative number of studies 
characteristic of the stereotype threat literature, 
posterior passing provides an up-to-date, accurate 
estimation of the true population level effect with-
out the need for a dedicated meta-analysis. Con-
versely, using traditional analytic techniques such as 
ANOVAs in “one-shot” analyses, produced an abun-
dance of conflicting effect size estimates as is found 
in the stereotype threat literature at present. Fur-
thermore, posterior passing produces almost iden-
tical results to a ‘meta’ GLMM analysis in which all 
available data were combined and analysed as one 
dataset.  

Bayes Rule and Posterior Passing 

Bayes’ theorem (a.k.a. Bayes’ rule), is a method of 
assigning probabilities to hypotheses. Given a set of 
competing hypotheses and our beliefs about how 
likely they are to be true, it provides us with the 
probability that each hypothesis is true when we 
collect more data. More formally this can be written 
as: 

𝑝(ℎ|𝑑) =
𝑝(ℎ)𝑝(𝑑|ℎ)

𝑝(𝑑)  

where p(h|d) is the probability that each hypoth-
esis is true taking the data into account (the “poste-
rior”),  p(h) is the probability of each hypothesis be-
ing true prior to collecting data (the “prior”), and 
p(d|h) is the probability that each hypothesis would 
have produced the observed data (the “likelihood”). 
The denominator, p(d), can be conceptualized as the 
probability of getting the data under any hypothesis, 
but in practice it acts as a normalizing constant to 
ensure that the posterior probabilities sum to 1. To 
illustrate the application of Bayes theorem we will 
now walk through a simple example based on a 
thought experiment used by the 16th century statis-
tician Jacob Bernoulli. Other introductions to Bayes-
ian inference can be found elsewhere (van de Schoot 
et al. 2014; Morgan, Laland & Harris 2014; McElreath 
2016, Kruschke 2011) and we encourage readers to 

seek these out. 
Consider an urn containing a mix of blue and 

white pebbles and imagine we are interested in un-
derstanding what proportion of the pebbles are 
blue. To start with, we have two competing hypoth-
eses: (1) 75% of the pebbles are blue, or (2) 75% of the 
pebbles are white (we assume that these are the only 
two possibilities). We will test these hypotheses by 
collecting data; three times we will draw a pebble 
from the urn, note its color, and replace it. Before 
collecting data, let us note our prior beliefs (p(h) in 
the above equation). Without any knowledge we 
could assign each hypothesis equal prior probability 
(i.e. 50% in both cases) but let us imagine we have 
reason to suspect hypothesis 2 is more likely (per-
haps we know blue pebbles are rare, or we know that 
the urn was filled at a factory that produces more 
white than blue pebbles, or maybe someone told us 
that they glanced inside the urn and it looked mostly 
white etc.). Given this we assign prior probabilities 
of 0.4 and 0.6 to the two hypotheses. 

Now to data collection; let us assume we happen 
to draw three blue pebbles. We need to use this data 
to calculate the likelihood for each hypothesis, i.e. 
the probability of drawing three blue pebbles under 
each hypothesis (p(d|h) in the above equation). The 
probability of drawing a blue pebble three times un-
der hypothesis 1 is 0.753 , and 0.253 under hypothesis 
2. This is 0.42 and 0.016 respectively. Note that the 
likelihood is much higher for hypothesis 1, this 
means that the data are more consistent with hy-
pothesis 1 than with hypothesis 2 and so we should 
expect Bayes’ theorem to shift the probabilities of 
each hypothesis in favor of hypothesis 1. 

 The next step is to calculate the normalizing 
constant, p(d), which is the probability of getting the 
data under any hypothesis. It is the sum of the prob-
ability of getting the data under each hypothesis 
multiplied by the prior probability that each hypoth-
esis is true, i.e. it is the sum of the likelihoods multi-
plied by the priors. In our case we only have two hy-
potheses, so p(d) is p(h1)p(d|h1) + p(h2)p(d|h2). We now 
have all the necessary parts to execute Bayes’ rule 
and we can calculate the probability that each hy-
pothesis is true. The table below summarizes this 
process, showing that because the data were more 
consistent with hypothesis 1 it is now the more likely 
of the two hypotheses, even though it started with a 
lower prior probability. 
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This example can also illustrate how Bayes’ theo-
rem facilitates cumulative science. Assume someone 
else decides to draw more pebbles from the same 
urn. How can they include our data in their anal-
yses? The solution is straightforward: they simply 
need to use our posterior as their prior. More gen-
erally, by using the posterior from a previous study 
as the prior in the next one, the posterior of the sec-
ond study will reflect the data collected in both 
studies, forming a chain of studies each of which 
builds on the last to provide an increasingly precise 
understanding of the world. This method is referred 
to as “posterior passing” (Beppu & Griffiths 2009) 
and is the focus of this manuscript. If posterior pass-
ing is effectively implemented, it is mathematically 
equivalent to collecting all the data in a single high-
power study (Beppu & Griffiths 2009). In both a the-
oretical analysis and a lab experiment, Beppu and 
Griffiths (2009) found that posterior passing led to 
successively better inferences over time. Given this, 
posterior passing may offer a valuable addition to 
the scientific process, with particular benefits for 
fields suffering from ambiguous literatures or repli-
cation crises. The passing of posteriors across stud-
ies not only incorporates information from prior 
studies, but also prevents any experimental dataset 
from carrying too much weight. In the next section 
we discuss how posterior passing can be imple-
mented as part of the Bayesian analysis of data. 

 
 
 

Posterior passing in practice 

While the above example is much simpler than 
most scientific problems, it is relatively straightfor-
ward to generalize the theory to continuous hy-
pothesis spaces as is characteristic of much scien-
tific research. For instance, say we are hypothesiz-
ing about the value of a parameter in a model. Rather 
than assigning prior probabilities to specific hypoth-
eses (such as “the parameter is 2.5”) we describe a 
probability density function across the range of pos-
sible values for the parameter. For instance, if we 
have reason to believe the parameter is close to 10, 
we might use a normal distribution with a mean of 
10 and standard deviation of 1 (this permits any value 
from positive to negative infinity, but 10 is the single 
most likely value and 95% of the probability mass 
falls between 8 and 12). The likelihood, too, becomes 
a function over the hypothesis space and the nor-
malizing constant is calculated the same way as be-
fore: the prior is multiplied by the likelihood and the 
resulting function is summed across the hypothesis 
space. The posterior, again calculated as the prior 
multiplied by the likelihood and divided by the nor-
malizing constant, is also a probability density func-
tion, allocating posterior probability over the pa-
rameter space which can then be passed as the prior 
in subsequent studies. 

The application of Bayes’ rule to continuous hy-
pothesis spaces (such as in parameter estimation) 
runs into problems, however, because it is often im-
possible to calculate the normalizing constant. The 

Table 1. A summary of the example execution of Bayes’ theorem. The probability that 
each hypothesis is true, taking the data into account (the “posterior”, column 5), is the prior 
(column 2) multiplied by the likelihood (column 3) and divided by a normalizing constant 
(the sum of column 4). 
 

Hypothesis   Prior,    p(h) Likelihood, 
p(d|h) 

Prior * Likelihood, 
p(h)p(d|h) 

Posterior, 
p(h|d) 

1 0.4 0.42 0.17 0.95 

2 0.6 0.016 0.009 0.05 
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circumnavigation of this problem relied on the de-
velopment of modern computers and new tech-
niques such as Markov Chain Monte Carlo (MCMC) 
methods. The details of this technique are compli-
cated (for accessible introductions to MCMC see 
McElreath 2016; Kruschke 2011), but it works by 
providing the user with a series of values (called 
“samples”) that approximate values drawn from the 
posterior probability density function even though 
the exact density function itself remains unknown.  

As the number of samples approaches infinity, 
statistical descriptions of the samples converge on 

the same values of the posterior probability density 
function itself. For instance, the mean of the samples 
approaches the mean of the posterior probability 
density function, and an interval that contains 95% 
of the samples will also contain 95% of the probabil-
ity mass of the posterior distribution. So, even 
though the posterior probability density function 
technically remains unknown, we can nonetheless 
describe it in a variety of ways.   

In order to implement posterior passing we now 
need a means by which samples from the posterior 
can be translated into a probability density function 

samples
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Figure 1. The translation of a histogram of samples into a probability distribution. Here the samples (black histogram 
of 50,000 samples) look somewhat normal, but they are all positive and the histogram is positively skewed. Using the 
mean and variance to define a normal distribution (solid blue lines, scaled x10000) produces a reasonable fit, but the 
lower tail places non-zero probability density on negative values while the peak appears to be slightly higher than the 
peak of the histogram. Using a gamma distribution instead (solid red line) produces a perfect fit. Artificially inflating 
the variance (dashed lines) changes the distributions. In the case of the normal distribution it greatly widens it, placing 
increasing amount of probability mass below 0. In the case of the gamma distribution the positive skew grows, but all 
the probability mass remains above 0. In this way the variance is increased but the mean of the probability distribution 
remains the same as the mean of the samples. 
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that will be the prior in subsequent studies. The sim-
plest approach is to assume the posterior is nor-
mally distributed and then define the prior as a nor-
mal distribution with the same mean and standard 
deviation as the samples generated. So, if the mean 
of the samples is 5.3 and the standard deviation is 
0.8, then this can be assumed to correspond to the 
probability distribution N(5.3, 0.8). However, assum-
ing normality could lead to an inaccurate descrip-
tion of the posterior. To alleviate this concern re-
searchers can inflate the standard deviation of the 
passed posterior, for instance changing N(5.3, 0.8) to 
N(5.3, 8). This will broaden the prior, effectively 
weakening its influence and so avoiding distorting 
results due to the posterior passing process. By the 
same token, however, broadening the prior will also 
lessen the influence of past research and potentially 
slow down scientific accumulation.  

A more nuanced approach is to build bespoke 
priors for each set of posterior samples. The re-
searcher can choose a probability distribution that 
closely matches the shape of the posterior samples 
(e.g. normal, exponential, gamma or beta) and ap-
propriate parameter values can be calculated from 
the samples. For instance, a normal distribution with 
the same mean and standard deviation as the sam-
ples, or a gamma distribution with shape and rate 
parameters calculated from the mean and variance 
of the samples. As before, if the researcher wishes to 
err on the side of caution by weakening the effect of 
the passed posterior on subsequent analyses they 
need to simply inflate the variance of the distribu-
tion. Figure 1 shows an example of this in action il-
lustrating that a highly suitable distribution is de-
rived in this manner. Inflating the uncertainty in the 
prior also facilitates posterior passing in cases 
where there are differences in experimental design 
or analytic technique. Even within a single area of 
research it is rare that any two studies are exactly 
the same. These differences mean that the posterior 
produced by one study may not be entirely appro-
priate for the prior in another. However, experi-
ments do not have to be identical to engage in pos-
terior passing: as long as they are addressing the 
same theoretical “effect” then there is reason to 
draw on previous knowledge. In these cases, the un-
certainty in the posterior should be inflated to ac-
count for differences in experimental design. 

Another possibility is that the prior could be 
based on a previous study that used non-Bayesian 

methods. If even a point estimate for the effect size 
is given then this can be used as the mean of the 
prior with the variance set to a suitable value corre-
sponding to the researcher level of uncertainty. Pre-
cisely how much a prior should be watered down in 
cases such as these will depend on the similarity of 
the studies in question and discussion of this should 
be an important part of the peer-review and publi-
cation process. Moreover, where concerns are 
raised, robustness analyses can be used in which the 
prior is varied and the resultant effect on the con-
clusions described and discussed. In the short term, 
it may be beneficial to compare results with and 
without posterior passing to show the difference in 
inference that results from either approach.  

The simulation 

In this section we present a simulation of the sci-
entific process, testing the hypothesis that posterior 
passing will benefit science relative to other meth-
ods of data analysis and avoid the accumulation of 
large, ambiguous literatures. We simulate a series of 
experiments testing for an interaction between two 
variables. We vary (i) the true effect size of the in-
teraction, (ii) the scale of between individual differ-
ences and (iii) the statistical technique employed by 
scientists. The simulation is, in part, based on the 
stereotype threat literature as this produced an am-
biguous and conflicted literature, as discussed pre-
viously. As such, we refer to the interacting variables 
as sex and condition, and various simulation param-
eters (e.g. the number of participants per study) are 
set to values representative of the stereotype threat 
literature. 

We use the simulation to compare four different 
analysis methods; an analysis of variance (ANOVA), a 
generalised linear mixed model (GLMM), a Bayesian 
GLMM using MCMC estimation (henceforth 
“BGLMM") and a Bayesian GLMM using MCMC esti-
mation and posterior passing (henceforth “PP”). 
ANOVAs have been widely used in psychology for 
decades and still represent one of the most com-
monly used analytic approaches (including for stud-
ies of stereotype threat), despite suggestions of 
their inadequacy for many types of experimental de-
sign (Jaeger 2008). A move towards using general-
ised linear mixed models for categorical and bino-
mial data has been suggested as more appropriate 
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than methods often used by psychologists and ecol-
ogists (Jaeger 2008; Bolker et al. 2009) and so we in-
clude both a frequentist GLMM and a Bayesian 
equivalent. Finally, we include “posterior passing” 
(Beppu & Griffiths 2009) to examine whether imple-
menting posterior passing as a form of cumulative 
knowledge updating would be beneficial. Addition-
ally, we performed a single BGLMM analysis over all 
simulated datasets combined (henceforth “meta 
BGLMM") in order to compare posterior passing 
against the best possible scenario of a single high-
power study.  

Each repeat of the simulation involved the fol-
lowing three steps: 1) a population of one million po-
tential experimental subjects was created, 2) 60 se-
quential experiments were carried out, each involv-
ing 80 participants taking part in 25 experimental 
trials (numbers chosen as representative of the ste-
reotype threat literature) and 3) the 60 datasets 
were analysed using the four different analysis 
methods. For each combination of parameter values, 
we carried out 20 repeat simulations. Further details 
are given below, and full model code is available at 
www.github.com/thomasmorgan/posterior-pass-
ing. 

Population Creation 

Each of the 1,000,000 simulated participants is 
defined by two values; their sex (0 or 1, with half of 
the population having each value) and their perfor-
mance at the experimental task relative to the pop-
ulation average (positive values indicate above aver-
age performance, and negative values below average 
performance). Each participant’s performance value 
was drawn randomly from a normal distribution 
with mean 0 and with variance that varied across 
simulations (from 0 to 1 in steps of 0.25). For each 
participant there was another participant of the 
same sex but with the opposite performance value, 
and another of the opposite sex, but with the same 
performance value. This ensured that the average 
performance value in the population was exactly 0 
(equivalent to 50% success on a binary choice trial), 
and the variation in performance within each sex 
was equal. 

 

Data Collection 

Datasets were generated by randomly selecting a 
sample of 80 individuals who were then split into a 
control group and an experimental group (20 of each 
sex in each group). Each simulated participant was 
presented with 25 binary-choice trials and the num-
ber of trials they answered correctly was generated 
by sampling from a binomial distribution in which 
the likelihood of success per trial was: 

 
𝑝( = 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒( + 𝑒 ∗ 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛( ∗ 𝑠𝑒𝑥() 

 
where e is the unknown interaction effect that 

the simulated experiments are attempting to iden-
tify. In the context of stereotype threat, it can be 
considered as the magnitude of the effect of the ste-
reotype threat condition on the behaviour of women 
(i.e. participants of sex 1). Note that participants of 
sex 0 (i.e. men) are insensitive to condition, and con-
dition 0 (the control condition) does not affect par-
ticipant behaviour. 

Across simulations, we consider five different 
values for e (the magnitude of the effect in question): 
0, 0.5, 1, 1.5 and 2. Given that the average population 
performance was 0 (equivalent to a 50% chance of 
success per trial) these values increase the average 
probability of success from 0.5 to 0.5, 0.62, 0.73, 0.82 
and 0.88 respectively. Thus, the cases we explored 
range from no interaction effect, up to a large effect, 
exceeding the effect sizes reported in meta-anal-
yses of the stereotype threat literature (e.g. Doyle & 
Voyer 2016). 

 

Data Analysis 

We performed four methods of analysis on each 
simulated dataset. The first is the predominant 
method of analysis used in the stereotype threat lit-
erature; analysis of variance (2 x 2 ANOVA). Average 
success on the task (i.e. number of successes/num-
ber of trials) was subjected to a 2(Sex) x 2(Condition) 
ANOVA, that included a main effect of sex, a main 
effect of condition, and an interaction between sex 
and condition at a significance value of p<0.05. 

The second method is a generalised linear mixed 
model (GLMM) which models number of successes 
as a binomially distributed variable and uses a logit 
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link function. The same outcome and predictor var-
iables are used as in the ANOVA (i.e. a baseline effect, 
and effects of sex and condition as well as a 
sex*condition interaction), but a random effect for 
participant is implemented. This method fits param-
eters based on a maximum likelihood approach and 
estimates the linear effect that our manipulation and 
independent variables have on the log odds of suc-
cess in any given trial. 

The third approach uses the same model formu-
lation as the GLMM, but uses Bayesian MCMC meth-
ods to generate parameter estimates in JAGS. Mini-
mally informative priors (normal distributions with 
mean 0 and precision 0.01) were used for all param-
eters, and so we expect that the outcomes of this 
analysis should be extremely similar to that of the 
frequentist GLMM. 

The fourth approach is a Bayesian GLMM with 
“posterior passing,” (Beppu & Griffiths 2009) in 
which the prior for e (the interaction effect) is based 

on the posterior from the most recent previous ex-
periment. As a deliberately coarse implementation 
of posterior passing we assumed the posterior was 
normal and defined it solely by its mean and preci-
sion.  

Results 

Within each simulation, the general pattern was 
for posterior passing to converge on the true effect 
size while the other analysis types produce a series 
of independent results distributed stochastically 
around the true value with no convergence over 
time (see Fig. 2A and 2B). Five metrics were used to 
more thoroughly examine the performance of each 
analytic technique across simulations, 1) the average 
point estimate; 2) the true positive rate; 3) the false 
positive rate; 4) the average width of the 95% confi-
dence/credible interval; and 5) the average differ-
ence between the effect estimate and the true value. 

Figure 2. Analysis estimates produced from a single simulation of 60 experiments. The true effect sizes (displayed by 
the horizontal black line) are (a) 0 and (b) 2 (equivalent to an increase in the probability of responding correctly of 0.38). 
In both cases there is no individual variation. Across experiments, the estimates produced by the ANOVA, GLMM and 
BGLMM vary stochastically around the true population average, with the accuracy or certainty of each analysis 
unrelated to its position in the series. Furthermore, in panel (b) the ANOVA estimates are considerably less certain than 
those of the GLMM or bGLMM. In contrast to all other methods considered, posterior passing allows the analysis to 
become more accurate and more certain over time. Note that a particularly skewed data set (data set 9, in panel a) 
prompts all analyses to find a positive result, despite this, posterior passing is nonetheless able to correct itself by the 
end of the simulation. 
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These were calculated for the analysis of each sim-
ulated data set, except in the case of posterior pass-
ing where only the final analysis in each simulation 
was used. This is because, with posterior passing, in-
formation from each dataset is incorporated into 
subsequent analyses and so the final analysis con-
tains information from all 60 datasets.  

Effect size estimates 

All analysis types were generally effective at esti-
mating the size of the effect (see Fig. 3). However, as 
the between-individual variation increases, the 
ANOVA underestimates the effect size to a modest 
extent. 
 

True positive result rates 

For all analyses, the ability to detect a positive ef-
fect increased with the true effect size (Fig. 4). How-
ever, for the ANOVA, GLMM and BGLMM increasing 
individual variation decreased the true positive re-
sult rate. With posterior passing, there is no such ef-
fect; positive results are likely to be found whenever 
the true effect is non-zero 

Figure 3. Average effect size estimates from the five analysis types over 20 simulations of 60 datasets (Bayesian GLMM 
not shown as it is identical to the GLMM). The true population average is on the x axis, and the individual variation on 
the y axis. Colour corresponds to effect size estimate according to the key to the right of the panels. 
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False positive result rates 

When the true effect was 0, all analyses were un-
likely to produce (false-)positive results but did oc-
casionally do so (see Fig. 4). Across all datasets 
(N=6000) the ANOVA produced 304 false positives 
(5.1%, close to the expected false positive rate of 5%), 
the GLMM 341 false positives (5.7%) and the BGLMM 
304 false positives (5.1%). For posterior passing (and 
the meta BGLMM), we are concerned only with 
whether the final analysis in each series produced a 
false-positive result. Over 100 simulations in which 
the true effect size was zero (i.e. 20 repeats of 5 dif-
ferent variance levels), posterior passing produced 

two false positives, while the meta BGLMM pro-
duced one.  

 

Uncertainty 

In general, the width of the 95% confi-
dence/credible intervals (henceforth “uncertainty”) 
decreases with the true effect size, but increases 
with individual variation (Fig. 5). There are differ-
ences between analyses however. The ANOVA is 
much more sensitive to individual variation than to 
the true effect size, i.e. increasing the true effect 
size only modestly reduces uncertainty, while in-
creasing individual variation greatly increases un-
certainty. Both the GLMM and BGLMM produce 

Figure 4. Positive rate for the five analysis types over 20 simulations of 60 datasets (Bayesian GLMM not shown as it is 
identical to the GLMM). The size of the true population average is on the x axis, and the individual variation on the y 
axis. Colour gives the positive result rate, ranging from 0 - 1, according to the key to the right of the panels. An analysis 
finds a positive effect in the population if the upper and lower bounds for its 95% confidence/credible interval do not 
include zero, the proportion of analyses in which a positive effect is found is the positive results rate. 
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confident results provided either the true effect size 
is high or individual variation is low, however if the 
effect size is small, but variation high, then model 
estimates are highly uncertain. Finally, while the un-
certainty of both PP and the combined BGLMM is 
sensitive to the effect size and individual variation, 
it is only minimally so and confidence is very high 
across all of the parameter space we explored. The 
meta BGLMM, in which all data are analysed in a sin-
gle analysis, performs almost identically to posterior 
passing. 

Error  

The average difference between the parameter 
estimates and the parameter’s true value was very 
low across all of the parameter combinations we 

considered, except in the case of the ANOVA (Fig.6). 
This is because the ANOVA systematically underes-
timates the value of the parameter when the true 
population average is high and individual variation is 
high (see Fig. 6).  

Discussion 

This paper introduces posterior passing; a statis-
tical technique, based on Bayes’ Theorem, that uses 
the results of prior studies to inform future work. In 
this way it allows the operationalization of cumula-
tive science, allowing individual studies to build on 
each other, avoiding conflicted literatures and 

Figure 5. Analysis uncertainty measure for the five analysis types as a function of true population average and individual 
variation (Bayesian GLMM not shown as it is identical to the GLMM). Colour represents the uncertainty of each analysis 
as given by the key to the right of the panels. 
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thereby reducing the need for dedicated meta-anal-
yses. To test the performance of posterior passing 
we conducted a simulation of datasets sampled from 
populations with varying effect sizes. Different sta-
tistical techniques were used to analyse the datasets 
and compared to a posterior passing approach over 
the same datasets. We found that although no 
method was perfect (e.g. all methods produced a 
non-zero number of false-positive results), poste-
rior passing leads to greater certainty over time 
about the existence and size of an effect compared 
with the other statistical methods considered. As 
such this work supports the proposal that posterior 
passing is a viable means by which cumulative sci-
ence can be implemented. 

One of the goals of this project was to test 
whether posterior passing could effectively identify 
the true value of an effect in a context where other 

analytic techniques have led to the build-up of an 
ambiguous literature, such as that concerning ste-
reotype threat. Such literatures are defined by a mix 
of positive and negative findings, and in practice 
they have remained ambiguous despite multiple 
meta-analyses. In our simulations, examination of 
the positive result rate shows that such ambiguity is 
common to all non-cumulative analyses when be-
tween individual variation is high and when the ef-
fect size is small. Nonetheless, posterior passing is 
highly successful at correctly identifying the effect-
size in these cases (only 2% of simulations produced 
a false-positive result). 

These findings have important implications for 
the way scientists conduct, analyse and publish their 
research. Firstly, the use of ANOVAs (the current 
norm in priming studies) is shown to be particularly 
problematic. In our results, the ANOVA was the least 

Figure 6. Analysis estimate error as a function of true population average and individual variation (Bayesian GLMM not 
shown as it is identical to the GLMM) . Colour gives the size of the error, ranging from -0.1 to 0.1, according to the key 
to the right of the panels. 
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accurate at identifying the effect size, especially 
when the effect size was small and the variation 
high. The priming literature is precisely when re-
searchers predict effect sizes to be small and indi-
vidual variation to be high, as the mechanism under-
lying the effect is unknown and some individuals are 
expected to be more or less susceptible to the effect 
depending on various moderating variables (see 
Bargh 2012; Gelman 2016). Therefore, the fact that 
ANOVAs are less likely than other methods to be 
able to accurately decipher an effect in these types 
of datasets suggests that researchers studying 
priming effects (as well as other small, variable ef-
fects) should move away from the ANOVAs and on to 
other methods, as has been previously suggested 
(e.g. Jaeger 2008).  

A second implication of our results is that poste-
rior passing is considerably better than using Bayes-
ian methods per se. With minimally informative pri-
ors, the Bayesian GLMM did not provide any detect-
able improvement in performance compared to the 
frequentist GLMM. This was expected because the 
important difference between the GLMM and the 
Bayesian GLMM was the use of priors, but by using 
minimally informative priors we masked this differ-
ence. This might appear to suggest that there is little 
benefit to using Bayesian methods over frequentist 
methods if priors are implemented uninformatively. 
However, other benefits exist that are not consid-
ered in our simulation. For instance, the philosophy 
of Bayesian inference is arguably more intuitive than 
null hypothesis significance testing (McElreath 
2016), with Bayesian credible intervals more readily 
understood than frequently misinterpreted p-val-
ues and confidence intervals (Belia, Fidler, Williams, 
& Cumming, 2005; Greenland et al., 2016). Nonethe-
less, bearing these other benefits in mind, our sim-
ulation results clearly suggest that posterior passing 
is a major benefit to using a Bayesian approach. 

Reassuringly, even our deliberately coarse imple-
mentation of posterior passing (in which only the 
posterior for the interaction term was passed, and it 
was assumed to be normal) was highly successful. 
Moreover, even when spurious results are present 
(e.g. Fig.2a, dataset 9), posterior passing rapidly re-
verts to the true population effect. As a measure of 
the success of posterior passing we compared it to 
a single, “meta”, Bayesian GLMM conducted over all 
60 datasets combined, as this is equivalent to the 
greatest possible performance achievable through 

posterior passing. According to all of our metrics for 
evaluating the performance of different analytic 
techniques, posterior passing was virtually indistin-
guishable from this ‘meta Bayesian GLMM’. None-
theless, further work could measure the effect of 
more refined implementations of posterior passing 
(including passing all parameters) as this may accel-
erate the convergence of knowledge concerning the 
effects in question. 

 Posterior passing is not the only means to 
achieve cumulative science, however, and, as men-
tioned in the introduction, Sequential Bayes Factors 
and Curated Replications hold similar promise. Our 
results cannot comment on the efficacy of these 
methods relative to posterior passing, however, 
there are some key differences between the ap-
proaches. First, the use of Bayes Factors is not un-
controversial and their application has been debated 
elsewhere (e.g. Robert, 2016). One such argument is 
that Bayes Factors retain the “accept/reject” philos-
ophy of null hypothesis significance testing, 
whereas other researchers have called for a shift to-
wards more accurate parameter estimation and 
model comparison approaches (Cumming, 2013; 
McElreath, 2016). We agree with the sentiment of 
Schönbrodt and colleagues (2017) that estimation 
and hypothesis testing answer different questions 
and have separate goals, reflected by a trade-off be-
tween accuracy and efficiency respectively. We ar-
gue that ultimately scientists should value both ac-
curacy and efficiency, but not prioritise efficiency at 
the expense of accuracy. Furthermore, posterior 
passing offers a means of achieving both accurate 
and (more) efficient estimates than the other analy-
sis techniques included in our simulation, as poste-
rior passing converges on the correct effect size 
within 10-15 analyses (compared to the full 60 da-
tasets). With regards to Curated Replications and 
calls for measures of replication success (LeBel et al., 
2018; Zwaan et al., 2017), these approaches can be 
distinguished from posterior passing in that they 
formalize the process of replication to ensure the 
robustness of findings. Posterior passing, con-
versely, does away with the notion of replications as 
studies build on each other rather than specifically 
testing the results of prior studies.  

Despite its success in our simulation, posterior 
passing is unlikely to be a scientific cure-all. One 
factor identified as a problem in science, but not 
considered in our simulation, is publication bias (the 
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increased likelihood of publishing positive findings 
compared to null findings). It is likely that the per-
formance of posterior passing, along with the other 
analyses considered, will be negatively affected by 
publication bias. Indeed, posterior passing may ex-
acerbate the problem of publication bias if research-
ers only put forward their positive results to be part 
of a posterior passing framework. That said, if avail-
able data from multiple studies are put towards a 
cumulative analysis, regardless of their novelty, re-
searchers may be more motivated to publish their 
null results, as well as replications, and so the imple-
mentation of posterior passing may reduce publica-
tion bias indirectly. Given these uncertainties, it 
would be valuable for further work to ascertain how 
sensitive each analysis type is to various levels of 
publication bias. 

Another assumption of our simulation is that all 
analyses are similar or comparable enough to use in 
a posterior passing framework. In actual scientific 
practice, however, scientists may struggle to use the 
results of one analysis to inform the next one due to 
differences in experimental design or analytic model 
structure. Moreover, even where a single model 
structure is agreed this may systematically differ 
from reality, introducing bias into model estimates. 
Further work is needed to explore the effects of this 
kind of mismatch on the performance of posterior 
passing. Nonetheless, as previously discussed, pos-
teriors can be watered down by increasing their var-
iance, thereby lessening the effect of prior work on 
current findings. While such practice necessarily 
slows down scientific accumulation, it will reduce 
the risks that inter-study incompatibilities pose to 
posterior passing. This highlights how appropriate 
use of priors will be an important issue for research-
ers, as well as editors and reviewers, and that it is 
important that manuscripts make clear which priors 
were used and why. Researchers may also wish to 
include robustness checks in which priors are mod-
estly adjusted and the subsequent change in results 
included in supplementary materials.  

In this manuscript, we have presented posterior 
passing as one way in which cumulative science can 
be implemented. Among the benefits of posterior 
passing is that it is easy to implement as a simple ex-
tension beyond standard Bayesian analyses of data. 
Moreover, our simulations suggest that posterior 
passing works well in contexts where traditional, 

non-cumulative, analyses produce conflicting re-
sults across multiple studies. The use of posterior 
passing in these contexts would potentially identify 
the true effect with confidence, and without relying 
on meta-analyses that, in practice, often fail to re-
solve debates. Nonetheless further work is needed 
to evaluate posterior passing, in particular, how well 
it fares when faced with other known problems in 
science, such as biases in publication.  

Open Science Practices 
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