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The behavioural scientist who requires an estimate of narrow heritability, /2, will con-
duct a twin study, and input the resulting estimated covariance matrices into a par-
ticular mode of estimation, the latter derived under supposition of the standard bio-
metric model (SBM). It is known that the standard biometric model can be expected
to misrepresent the phenotypic (genetic) architecture of human traits. The impact
of this misrepresentation on the accuracy of h? estimation is unknown. We aimed to
shed some light on this general issue, by undertaking three simulation studies. In
each, we investigated the parameter recovery performance of five modes- Falconer’s
coefficient and the SEM models, ACDE, ADE, ACE, and AE- when they encountered a
constructed, non-SBM, architecture, under a particular informational input. In study
1, the architecture was single-locus with dominance effects and genetic-environment
covariance, and the input was a set of population covariance matrices yielded under the
four twin designs, monozygotic-reared together, monozygotic-reared apart, dizygotic-
reared together, and dizygotic-reared apart; in study 2, the architecture was identical
to that of study 1, but the informational input was monozygotic-reared together and
dizygotic-reared together; and in study 3, the architecture was multi-locus with domi-
nance effects, genetic-environment covariance, and epistatic interactions. The informa-
tional input was the same as in study 1. The results suggest that conclusions regarding
the coverage of 4> must be drawn conditional on a) the general class of generating
architecture in play; b) specifics of the architecture’s parametric instantiations; c) the
informational input into a mode of estimation; and d) the particular mode of estimation
employed. The results showed that the more complicated the generating architecture,
the poorer a mode’s h? recovery performance. Random forest analyses furthermore
revealed that, depending on the genetic architecture, #?, the dominance and locus
additive parameter, and proportions of alleles were involved in complex interaction
effects impacting on h* parameter recovery performance of a mode of estimation. Data
and materials: https://osf.io/aq9sx/
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How Close to the Mark Might Published Heritability
Estimates Be?

The scientific aim of estimating the relative contribu-
tions of environment and genetics to the formation of
particular aspects of psychological phenotypes is by no
means new to the behavioral sciences. A traditional line
of approach enlists the tools of quantitative genetics and
involves the estimation of narrow- and broad-sense her-
itability (h*> and H?, respectively). The technical, quan-
titative sense of heritability relates to the explanation of
the variability of scores on a phenotype. In particular,
h? is the maximum proportion of phenotypic variance
that can be accounted for by a linear function of allele
counts; H?, the proportion of the phenotypic variance
associated with variability in the genotypes of individu-

als, thus reflecting all the genetic parts of a population’s
phenotypic variance, including additive, dominant, and
gene interactions (epistasis).

At least within the behavioral sciences, it is 42 that is
most commonly estimated. And, because the selection
and crossing experiments which are the basis for heri-
tability estimation in the case of plants and animals are
not applicable to humans (see, e.g., Vitzthum, 2003),
the standard approach to estimation is to conduct a twin
study, the yield of which is two or more covariance ma-
trices. These matrices serve as input into either a clas-
sical coefficient, such as that of Nichols (1965) or Fal-
coner (1960), or a structural equation model (SEM).
Due most directly, it would seem, to a growing and
highly accessible instructional literature bearing on the
topic (e.g., Heath et al., 1989; Neale and Maes, 2004;
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Rijsdijk, 2002), the latter approach to estimation has
come to be ascendant, with many recent publications
featuring estimates of 4> generated through the fitting
of latent variable models (e.g., Afifi et al., 2010; Nikolas
and Burt, 2010; Polderman et al., 2015 see Van Houtem
et al., 2013 for an overview).

All of these approaches to the estimation of 42, the
classical coefficients and SEM-based alike, are founded
on what is known as the Standard Biometric Model
(SBM), also known as the standard twin design, the
roots of which stretch back to the work of Fisher (1919)
and S. Wright (1921). The SBM (see, e.g., Holzinger,
1929; Jinks and Fulker, 1970; Rijsdijk, 2002; Schone-
mann, 1997; Vitzthum, 2003) is a latent variable model
that portrays the dependency of phenotype upon en-
vironment and genetics in terms of a linear equation
and set of moment restrictions. The linear equation is
Z =A+D+C+E, in which A, D, C, and E are latent
variables, to which the labels additive genetic variable
(A), dominance genetic variable (D), environmental im-
pact variable (C), and non-shared environmental influ-
ences (E) are commonly attached. The moment restric-
tions assert that all latent variables have expectations
of zero and are pairwise uncorrelated. When the SBM
is employed in the service of h?> estimation, the domi-
nance term is standardly omitted (Schénemann, 1997,
Vitzthum, 2003).

Recent work of both an empirical and theoretical na-
ture suggests strongly that the SBM can be expected to
be a very poor description of the vast majority of extant
phenotypic (genetic) architectures. In the first place,
the SBM omits factors that are now known to be impor-
tant features of many phenotypic architectures, among
these, gene-environment correlation (Bowles, Gintis, et
al.,, 2001; Bronfenbrenner, 1999; Kempthorne, 1978;
Shalizi, 2007), maternal effects representing the impact
of the uterine and perinatal environment, and genetic,
multilocus, interaction (epistasis; Wei et al., 2014; Zuk
et al., 2012). As Vitzthum (2003, p.541) has summa-
rized, “Assumptions of the model include no dominance
(if estimating 4?), no epistasis, no assortative mating,
no genotype-environment interaction, and no genotype-
environment covariance...” In the second place, what
the SBM asserts about phenotypic architecture comes
down to a linear model involving unmeasured, latent,
variables. The variables are pinned down by spartan
moment restrictions, raising the question of how much
of an impact the omission of the above-mentioned ef-
fects may have on model error. As an aside, and on the
methodological side of this issue, applied researchers
may also consider, for example, Monte Carlo Markov
Chain models which do not rely on the strict assump-
tions of the standard biometric model. Such mod-

els would enable them to simultaneously estimate also
gene-environment interactions and gene-environment
correlations (e.g., Eaves and Erkanli, 2003; He et al.,
2016) to gain further insights into the genetic architec-
ture of complex human traits.

The fitting of incorrect models to data can serve the
scientific enterprise in manifold ways. However, be-
cause the scientific value inherent to an estimate of a
fundamental quantity such as 4 derives chiefly from its
accuracy, it is by no means self-evident that the SBM’s
misrepresentation of phenotypic (genetic) architecture
is benign in the context of its role as quantitative foun-
dation for the estimation of #%. At the least, it seems
reasonable to inquire as to the degree to which this mis-
representation can be expected to impact upon the ac-
curacy of h? estimates. The misestimation of 4> under
presumption of the SBM is discussed as a chief contrib-
utor to the problem of phantom heritability' (Wei et al.,
2014; Zuk et al., 2012).

The central issue of concern in the present work is the
accuracy of heritability estimates generated under pre-
sumption of the SBM. From a slightly different angle,
we are interested in whether the estimates of narrow-
sense heritability found in the pages of journal articles
can be trusted as, on the whole, reflecting empirical re-
ality. With the aim of shedding some light on this is-
sue, we undertook three population-based simulation
studies. In each, we constructed, quantitatively, a rea-
sonable, non-SBM, architecture, on the basis of which
we then deduced population (twin) covariance matri-
ces. Each realization of the parameter vector associated
with the architecture yields both a numerical realization
of each of the matrices and a known numerical value
of h2. The matrices serve as input into a set of modes
of estimation, each of which returns an “estimate” (or,
more accurately, recovery) of h>. By running the pa-
rameter vector over a selection of all possible of its re-
alizations, we were able to produce, for each mode, an
approximation to the model error distribution (i.e., the
distribution of differences between true and recovered
h?). Side issues on which we hoped to throw some light
included: (a) the relative performances of commonly
employed modes of 4’ estimation; and (b), relatedly,
the issue of whether the newer SEM-based modes out-
perform the classical correlation-based.

We emphasize that, because population covariance ma-
trices were offered as input to each mode under con-
sideration, our results are free of the obscuring effects
of sampling error. Accordingly, our investigation must

!i.e., the phenomenon wherein the variants of a trait iden-
tified by genome-wide association studies explain only a frac-
tion of the narrow-sense heritability indicated as inhering in
the trait by conventional, SBM-based, estimates of />



be distinguished from prior investigations into statisti-
cal aspects of heritability estimation (e.g., Keller and
Coventry, 2005; Keller et al., 2010). Our interest was in
the h? parameter recovery performance of modes when
these latter are offered information unadulterated by
sampling error and encounter certain non-SBM archi-
tectures which can be expected to underlie empirical
estimation contexts.

Thus, although our investigation was, indeed, a sim-
ulation study, it was not a conventional one, in that we
did not sample individuals but, rather, numerical instan-
tiations of particular non-SBM architectures. Hence, our
study aims to investigate model error due to an incom-
plete knowledge of the actual data-generating model.
We emphasize, furthermore, that the work described
herein has little overlap with general critiques of her-
itability estimation (e.g., Schonemann, 1997), nor with
accounts of the pervasive misinterpretation and misuse
of the concept of heritability (e.g., Vitzthum, 2003). It is
our belief that the nearest precedent to the work herein
undertaken is the study on phantom heritability by Zuk
et al. (2012).

Our study is thus partly motivated by the discus-
sion about possible biasing effects of substantial non-
additive genetic variation on /? estimation, either due to
dominance (i.e., non-additivity of allelic effects within
loci) or epistasis (i.e., interactions of effects among
loci), or both (e.g., Eichler et al., 2010; Zuk et al.,
2012). It must be noted, though, that current evidence
suggests that the role of dominance or epistatic effects
in human traits may be small, and most of twin data
are in fact consistent with an additive polygenic genetic
model, meaning that multiple genes influence the phe-
notypic expression of a trait. The meta-analysis by Pol-
derman et al. (2015) found that 69% of investigated
traits showed that the “... pattern of twin correlations
is consistent with a (...) model of the absence of envi-
ronmental effects shared by twin pairs and the presence
of genetic effects that are entirely due to additive ge-
netic variation”. Thus, shared environmental as well as
dominance or epistatic effects in human traits seem to
play a smaller role than hitherto expected (e.g., Viss-
cher et al., 2017 for an overview). Similarly, Zhu et al.,
2015 on 79 bio-physiological human traits found little
dominance genetic variance, with an average estimate
of .03 and a maximum value of .19. On the other hand,
things might be more complicated because the impact
of non-additive genetic variation in twin studies can go
under the radar of twin-study analyses. This is because
dominant genetic variation might be masked by shared
environment in twin studies (Chen et al., 2015), leading
to h? estimates that are upward-biased to an unknown
extent (e.g., Chen et al., 2015; Zuk et al., 2012). In ad-

dition to that, epistatic interactions can also positively
bias 4? estimates by generating real additive variation
as marginal effects from higher-order genetic interac-
tions (D. M. Evans et al., 2002; W. G. Hill et al., 2008;
Marchini et al., 2005).

While it is relatively easy to raise objections against
twin-based 4% estimates based on these sources, it is
harder to know to what extent non-additive effects im-
pact upon h* parameter recovery performance in the
context of other possibly biasing genetic parameters.
Determining the extent of biasing effects of genetic non-
additivity on the quality of estimation of 4> while taking
other biasing parameters into account is therefore one
of the main aims of this article.

The organization of the paper is as follows: (a) In
the first sections, we offer the reader necessary techni-
cal background to the problem; (b) following which, in
the remainder of the paper, we address the central is-
sue of h? parameter recovery. Therein, we present three
simulation studies, each featuring an assessment of five
modes—Falconer’s coefficient and the ACDE, ADE, ACE,
and AE structural equation models—under a particu-
lar choice of informational input and non-SBM archi-
tecture. The first study featured a single locus ar-
chitecture with the non-SBM characteristics of domi-
nance effects and genetic-environment correlation. The
informational input was the set of covariance matri-
ces yielded under the four twin designs: monozygotic-
reared together, monozygotic-reared apart, dizygotic-
reared together, and dizygotic-reared apart, denoted as
ZMZ,T(Q); ZMZ,A(H), ZDZ,T(9)7 ZDZ,A(H)- The second Study
was identical to the first, except that the informational
input was reduced to only the first two of these covari-
ance matrices.

The third study featured a multi-locus, limiting pro-
cess, architecture (Zuk et al., 2012), which, in addition
to dominance effects and genetic-environment correla-
tion, had the non-SBM property of epistasis (i.e., ge-
netic locus-locus interaction). In particular, genome-
wide association studies undertaken during the past
ten years have yielded strong indications that human
traits are, as a rule, multilocus or complex (Benyamin
et al., 2014; D. M. Evans, 2011; Hsu, 2014; Wei et al.,
2014). Though the detection of epistasis poses signifi-
cant technical challenges (Wei et al., 2014), there exists
now evidence that it is operative in the expression of
many human phenotypes, including Alzheimer’s disease
(Hohman et al., 2013), multiple sclerosis (Gregersen
et al.,, 2006), ankylosing spondylitis (D. M. Evans,
2011), breast cancer (Ritchie et al., 2001), and psoriasis
(Strange et al., 2010). As noted by Zuk et al. (2012),
"Quantitative geneticists have long known that genetic
interactions can affect heritability calculations...". In



4

this final study, the informational input was identical
to that of the first.

It was neither our aim nor was it necessary for the
success of our investigation to construct architectures
that were, in some sense, empirically true. In fact, for
the vast majority of psychological phenotypes, little is
known about the associated engendering architecture.
Especially in light of manifold findings suggesting of the
complex genetic architecture of certain human traits,
all that was required was that a constructed architec-
ture was possible. It should nevertheless be stressed
that there has been progress in recent years in deter-
mining the genetic architecture of psychological traits
with studies having used more complex extended twin
family designs (Fedko et al., 2021; Schwabe et al.,
2017), genome-wide association studies (W. D. Hill et
al., 2019; Sniekers et al., 2017), or more sophisticated
methodological tools (L. M. Evans et al., 2018; Feng
et al., 2020; Grotzinger et al., 2019). That being said,
our aim was simply to gain insight into how commonly
employed modes of h* estimation—each derived under
the supposition of the SBM—can be expected to perform
when they encounter architectures that depart from the
SBM in ways deemed possible by extant scientific theory
and research.

Background and Theory

In this section, we offer the reader essential tech-
nical background to the problem, organized around a
careful disambiguation of the foundational concepts of
genetic architecture, Fisherian decomposition, population
variance components, and the standard biometric model.
Readers interested only in the results may directly con-
sult the part of the article devoted to the simulation
study.

Genetic Architecture and Phenotype

Let it be that:
1. Z is a quantitative or disease trait (phenotype)?

2. Each individual i belonging to a population P of
humans has a score on Z

3. For all i € P, Z; depends genetically on n biallelic
loci.

Let the alleles at locus 1 be {A;, A,}, at locus 2,
{B1,B,}, at locus 3, {C;, C,}, etc. It follows, then, that at
each of the n loci, three locus-specific genotypes are de-
fined (e.g., at locus 1, {A1A1, A1 Az, AsAs}); and overall,
3" genotypes with respect to Z°. Define gjij=1..,n,
to be the gene content at locus j; i.e., the number of
copies of the second allele (A,,B;,C,,...) present in a

locus j-specific genotype. For the locus 1 specific geno-
types A1A;, AjAy, and A A,, for example, g, is equal to
0, 1, and 2, respectively. Clearly, each of the 3" geno-
types is uniquely associated with a value of the n-vector
g, the jth element of which is g;. We define the genetic
architecture to be the scalar function ¥’(g) which maps
each of the 3" genotypes (equivalently, 3" distinct values
g* of g) into a genotypic value; i.e., ¥'(g) : g cR" - R
(Lynch & Walsh, 1998). The genetic architecture is said
to be single locus if n = 1, and multilocus otherwise.
The phenotypic value is the (individual level) scalar
function:
Zi=V(g)+y(E) €))

wherein y(E); = Z; - ¥'(g,) is a residual representing the
aggregate impact upon Z of all effects—both main and
interaction—involving the environment*,

Because each i € P has a set of values {g;, y(E)}, the
induced distribution of Z in P is determined by the joint
distribution of {g, y(E)}.

Fisherian Decomposition of ¥’(g) and Population
Variance Components

At the root of the quantity 4? is the variance compo-
nent a-i (and all other genetic variance components) of
H?. This variance component, called the additive vari-
ance, is defined on the basis of the Fisherian decompo-
sition of ¥'(g). In the single locus case, the Fisherian
decomposition is

Y'(g1) =¥ (gDin + 6(g1) 2

in which ¥ (g,), - the linear predictor of genotypic
value on the basis of gene content - is called the additive
component, and 6(g;) - the residual, and also, because
there are but three genotypic values, the quadratic fit to
these values - the dominance component. The additive
and dominance components can be expressed as

¥ (g1)iin = [a + Bgi] 3)

and

6(g1) =¥ (g1) = ¥(ghin 4

2If Z is a disease trait, then it is treated as a [0,1] dichoto-
mous variable given rise to by dichotomization, at 7, of an
underlying quantitative trait, or "liability", Z*; i.e., if Z* > 7,
then Z = 1; else, Z = 0 (Zuk et al., 2012).

3If n = 2, e.g., the nine genotypes are: {A;A,B,B,
A1A1B1By, A1A1ByBs, AjA3B 1By, AjAyB By,
A1A;B2By, Ay AB 1B, AyA2B B, A2A;ByB)}

4Genotypic values are taken, variously, to be either theo-
retical values or E(Z|g) (Lynch & Walsh, 1998). In the latter
case, the function ¥'(.) is, then, simply the conditional mean
function, in which case Ey(E) = 0.
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respectively, in which 8 = =524 and @ = pw — By,
g

1
Because ¥'(g;)in and &(g;) are orthogonal by con-
struction, equation (2) implies that the population ge-
netic variance can be decomposed as follows:

V(¥ (g1)) =V (¥ (g +V©E (@) =03 +05,  (5)

wherein ¢ is called the dominance variance compo-
nent. Symbolize P (A,) - the proportion of alleles in P
of type A, - as ¢, and let it be the case that the prob-
ability of occurrence of each of the three genotypes is
governed by the Hardy-Weinberg principle (see Lynch
and Walsh, 1998), in which case P(A; A}) = (1 — ¢)?,
P(A; As) = 2(1 - @), and P (A, Ay) = ¢2. Then

0_2 0_2
2 2 2 ¥(g1).81 ¥ (g1).81
= = = 6
TA ﬁ O—gl O_z)l 290(1 — 90) ( )
and
o =V(¥(g)-0x 7)

We can parameterize the genotypic values as follows:
¥ (g =0)=0,% (g1 =1) = (k+1)a, and ¥ (g, = 2) = 2a
(see Lynch and Walsh, 1998, p. 62). Clearly, parameter
a controls the linear rate of change of ¥’ (g;); parame-
ter k, the degree of nonlinearity of ¥’ (g;). Specifically,
if k =0, then ¥ (g;) is a linear function of gene content;
else, it is a quadratic function, the genotypic value for
A Ay (g1 = 1) lying nonequidistant between the geno-
typic values for A; A; (g1 =0) and A, A, (g =2) (see
Lynch and Walsh, 1998). Under the {a, k} parameteri-
zation (Lynch & Walsh, 1998),

oa = 2¢(1 - p)la(l + k(1 - 2¢))]” ®

and

o = (2¢(1 — p)ak)® 9)

In the multilocus case, the Fisherian decomposition
is

J=1 J=1

V(g =p¥ @+ ) Bg)+ Y 6(e)+ ) ler (10)
=1

in which: B (g;) = ¥'(@)inj — tw(o): ' (®@inj = 8, +5,8,
is the linear predictor of ¥’(g) on the basis of g;; 6 (gj) =

’ ’ n n
¥ (g) — V' (@injj; and the Iy, are m = ,zz( - ) =

(2" — n — 1) epistatic (locus-locus) interactions, there be-

ing | | interactions of the rth order, r = 2..n. Because

the latter three components are orthogonal by construc-
tion, equation (10) implies that

V(¥'(g) = o4 + 05+ 02p 1D

wherein o-ép is the variance due to epistasis.

We note, for later use, the fact that a vector of param-
eters g, can be defined which determines the magni-
tudes of all genetic variance components — o3,, 03, €tc.
defined under a particular architecture. The number
(and identities) of the elements of 8y, Will depend upon
the particular architecture in question. Thus, for exam-

ple, in a single locus architecture, the 3-element vector

k
it contains determine the two variance components O'/Zx
and o3.

Y
[ a ] is one option for O, in that the three parameters

The Quantities /?, H*, and o7,

By definition, narrow- and broad-sense heritability
are, respectively,

2

p=A (12)
0z
and
0= V(‘I’;(g)) (13)
07z

From (1), it follows that

0% = V(¥ (g) + VV(E)) + 209/ (g)y(E) (14)

Symbolizing V (y(E)) as o, expressions (5) and (14)
imply that

2

_ 2 2
07 =0pA+T0p+0E (UE + 209/ (g1 ) TA F Zpé(go,y(E)UD)

For the multilocus case, (11) and (14) imply that

2 _ 2 2 2
O'Z—0'A+O'D+O'EP+

TE (” E+ 2051, B(g)y®TA + 2051 6()0®D + 2031l EP)

(16)

The rho parameters - P, o> Poc)yE)s

P B(g) By P31, 6(3) By PIf I — aT€, Of course,
genetic-environment correlations.

We observe, for later use, that a vector of parame-

ters @y can be defined such that [ngn : Ov] determines

the magnitude of 6%. The number (and identities)



of the elements of #y is dependent upon the partic-
ular architecture in question. In the case of a sin-
gle locus architecture, one option for 8y is the vector
o}
p\zy,(gl)“my(E) . Note, finally, that, because o is deter-
Ps(g1),y(E)
mined by [ngn : Ov], 50, t00, is > (Hz).

Twin Studies and the Covariance Matrix g 1 (6)

From an examination of expressions (15) and (16),

. . . . 2 2 2 2
it is evident that neither the parameter o (0' s O'EP),

nor, consequently, 4> (Hz), can be recovered on the basis
of the information present in the distribution of Z. The
researcher who requires an estimate of 4> (Hz) must in-
crease the amount of information that can be brought
to bear on the problem, and the way he or she does
this, is by collecting data under two or more twin de-
signs. Let (Z,Z')z; be the set of score-pairs of twins,
collected under twin design {R, L}, in which R = { MZ
(monozygotic), DZ (dizygotic) } and L = {T (reared
together),A (reared apart)}. The yield from collect-
ing data under two or more such designs is a set of
sample covariance matrices, each matrix, iR,L/, an es-
timate of the corresponding population covariance ma-

0'% Oz7 (R, L)
Oz7 (R, L) O'%
covariance matrices is the input into a chosen mode of
estimation.

Because any particular Xg; is uniquely associated
with a particular crossing of trait Z and population P,
it is numerically engendered by the (unknown) archi-
tecture which underlies Z within P. In particular, the
elements of any X, are a function of three parameter
vectors: Ogen, fv, and a vector O¢x,) which, jointly with
[ngn : GV], yields the off-diagonal element of %z, i.e.,
0772 (R,L). The number (and identities) of the elements
of O¢cr ) will, of course, depend upon the architecture
in question. In the case of a single locus architecture
(see Schonemann, 1989, 1997)

trix gy = . This set of sample

02z2/(R, L) = pa(R)oA + po(R)0T, + pe(R, Lyog,  (17)

in which: pa(R)[pp(R)] is the correlation over twin
pairs having genetic relationship R between the ¥'(g;)
lin [6(g;)] components of Z and Z’; and pg(R, L), the cor-
relation over twin pairs having genetic relationship R
and rearing relationship L - between the y(E) compo-
nents of Z and Z’. Consequently, one choice of ¢ ) is
the vector

pa(R)
Pp(R)
PE(R,L)

The Standard Biometric Model for Twin Data

When applied to data from a twin study, the standard
biometric model assumes the form
z A+D+C+E
(Z’)_(A’+D’+C’+E’) (18)

in which: (A,A’) are additive genetic variables;
(D, D’) are dominance genetic variables; (C, C’) are vari-
ables representing the total impact, upon Z and Z’, re-
spectively, of all environmental influences to which the
twin pair was exposed in common; and (E, E’), vari-
ables representing the total impact of all environmen-
tal influences to which the members were uniquely ex-
posed. The standard moment restrictions stipulate that
the variables: a) all have expectations of zero; and b)
are pairwise uncorrelated under all combinations of R
and L, save for the following: if R = MZ, p(A,A’) =
o(D,D') = 1;if R =DZ, p(A,A’) = 0.5, p(D,D’) = 0.25;
andif L=T, p(C,C’) = 1.

It should be emphasized that the moment restrictions
have, to say the least, a tenuous relationship to extant
scientific understanding. We note, in particular, that:
a) (A,A’) and (D, D) are latent variables and are in no
way identical to the additive and dominance compo-
nents yielded by the Fisherian decomposition, which are
orthogonal by construction. b) The genetic correlations
prescribed under the SBM are expectations deduced un-
der particular, and contentious, assumptions. ¢) There
is little, if any, theoretical basis for the SBM stipulated
correlations involving (C,C’) and (E, E’), and the ques-
tionability of these stipulations (that, e.g., p(C,C’) = 0
for twins reared apart) is well-documented (see, e.g.,
Shalizi, 2007; Vitzthum, 2003).

Modes of Estimation

For the purposes of the present work, a mode of
estimation was defined to be any strategy that takes
as input a set of sample covariance matrices produced
in one or more twin studies and returns a recovered
value of h?>. As earlier noted, we distinguish be-
tween classical, correlation-based modes, such as the
coefficients due to Falconer, 2 (0zzmzr — PzzipzT), and

Nichols, W, and the more recent strategies

based on SEM.



The Study
Overview

To any fixed set {P,Z, ¥'(g), R, L}, there can be asso-
egen
ciated a parameter vector 6 = { Oy
Ocr 1)
the dependency of Xz; and h* upon 6 as X ;(f) and
h(0), respectively. As § moves over its parameter space,
yielding novel realizations 6", all possible instantiations
of {P,Z,¥'(g),R, L} are spelled out. For each, there is
an associated pair of numerical realizations of Xz, (6)
and h*(0), say, Xz, (6") and h*(6"). Our approach is
to examine the performance of particular modes in
recovering h* (§*) when the informational input is a set
of gy (6°). Let there be: a set S = {my,my,..,m;} of t
modes of estimation; a set H(f) = {ZR,L(H)g,g = 1..f}
of input population covariance matrices, each matrix
produced under one of f twin studies undertaken;
and a set R(H()) = {h%hzhtz} of ¢ (recovered)
narrow heritability values, where the sth h? = m (H(8))
is yielded by the sth mode with informational input
H(0). To this end, we conducted three simulation
studies. The same five modes—Falconer’s coefficient
and the four structural equation models, ACDE, ACE,
ADE, and AE—were investigated under each. Studies
1 and 2 shared the same single locus architecture but
differed in the informational input H(6) offered to the
modes. Study 3 featured a more complex multilocus
architecture. With the aim of improving readability, we
present the details of construction and results of each
simulation study separately.

]. We express

Data Generation

Data simulation and analysis were undertaken us-
ing the following R packages: data.table (Dowle et al.,
2017), doMC (Revolution Analytics & Weston, 2022),
dplyr (Wickham et al., 2023), foreach (Calaway et al.,
2015), lavaan (Rosseel, 2012), psych (Revelle, 2016),
ranger (M. N. Wright & Ziegler, 2017), and mlr (Bischl
etal., 2017). The code and data sets can be downloaded
from https://osf.io/aq9sx/.

Structural Equation Models (SEM)

Structural equation models (ACDE, ACE, ADE, and
AE) were fit by lavaan (Rosseel, 2012) with the follow-
ing restrictions: a) identification was achieved by fixing
the variances of all latent variables to unity; b) correla-
tions between latent variables were fixed following the
standard biometric model (see (18) and the following);
¢) analogous factor loadings to be estimated (depending

on the model: additive, dominance, common environ-
ment, and unique environment) were fixed to be equal
within twin pairs and across twin designs. The four
models are graphically depicted in Figure 1. Because
the input into analyses consisted of sets of population
covariance matrices, the sample size was set arbitrarily
large to 1,000,000 within lavaan.

Following estimation of model parameters, recovered
narrow heritability was calculated as i = “—z, where a2

97

is the squared recovered additive factor loading, and o%
is the recovered model-implied variance of Z (Z’).

Analysis

For each study and each of the 5 simulated model
error distributions (one for each mode), we report the
mean, standard deviation, minimum, and maximum.
For the absolute model error |1 —h? (6) | distribution, we
report the mean, standard deviation, and every tenth
percentile point. Both our central and side issues can
be adjudicated in manifold ways, and we found it infor-
mative to consider each from different angles. We em-
ployed the mean absolute model error as a criterion of
overall recovery performance, indicating the expected
closeness to the mark of the recovered values yielded
by a given mode. The variance of absolute model error
served as a criterion of the sensitivity of the parame-
ter recovery performance of each mode to the specific
features, which vary over 6%, of the particular architec-
ture in play. Finally, the minimum and maximum of the
model error distribution served as an indication of how
far off the mark recovered values delivered by a mode
could potentially be. In other words, how severely could
a mode misrepresent the true state of nature under the
chosen genetic architectures? Just because researchers
will, in general, be blind to the particulars of the en-
gendering architectures that underlie their estimations
of h?, this feature of recovery performance seems, to
us, a particularly important one. To ensure that the
assessment of the parameter recovery performance of
the SEM-based modes is not confounded with the is-
sue of model fit, we undertook a sub-analysis in which
the former issue is assessed based on data contributed
only by those solutions for which the standardized root
mean squared error of approximation (RMSEA) as the
noncentrality parameter of tolerable model misfit in the
population is less than .06° (i.e., instances in which the
application of a particular model to a set of input co-
variance matrices resulted in a notably good data-model
fit).

Finally, with the aim of providing some insight into

5see Hu and Bentler, 1999.
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Figure 1

Graphical representations of the four structural equation models (ACDE, ACE, ADE, and AE).
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the kinds of architectures - i.e., parametric instantia-
tions of {P,Z, ¥’ (g),R, L} - under which a mode deliv-
ers its poorest 4> parameter recovery performance, we
undertook variable importance analyses, with model
error as the dependent variable and the six factors
{90, a, k, pw (g2 y(E)» pg(gz),y(E),hz} as predictors. These
analyses were carried out using the method of random
forest regression trees (RFRT; Jones and Linder, 2015;
Friedman, 2001, p. 587ff; Breiman, 2001). Each anal-
ysis was based on 1,000 trees, and variable importance
(VIMP) measures calculated using the permutation ac-
curacy importance mode (e.g., Strobl et al., 2008). The
reader should keep in mind that a VIMP for a given pre-
dictor does not capture merely the additive effect (di-
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rect impact) of a given predictor but also the impacts
upon the dependent variable of interaction effects in-
volving the predictor and other predictors. A compara-
tively large VIMP, then, signifies a predictor possessing
overall predictive ability or significance but does not im-
ply anything about how this overall predictive efficacy is
partitioned into the various effects (i.e., additive and/or
interaction effects) in which the given predictor is in-
volved.

We attempted to gain some insight into the issue of
whether a relatively large VIMP is attributable to only
additive (direct) effect or a blending of additive and in-
teraction effects through computation of individual con-
ditional expectation (ICE) plots, as suggested by Gold-




stein et al. (2015). This approach is preferable to that of
the classical partial dependence plot (Friedman, 2001),
which graphically represents the average partial rela-
tionship between the predicted values on the dependent
variable and one or more predictors, conditional on the
remaining predictors. Insofar as substantial interaction
effects exist, and the partial individual response rela-
tionship is heterogeneous, this state of affairs will be
reflected in a crossing of the ICE curves.

Simulation Study 1
Introduction

In this first simulation study, we assessed the pa-
rameter recovery performance of the five modes when
they encounter a single locus architecture with the
non-SBM properties of dominance effects and genetic-
environment (either one or both of gene content-
environment and dominance-environment) correlation.
The informational input into each mode was H =
(Zmzr (0),Zpz7 (0) . Zpiz.4 (), Zpza (0)).

Details of construction.

We employed {a,k} parameterization for the geno-
typic values and parameterized the architecture in terms

[ ¢ ] [ P (1) H(E)
of the vectors Ogen = | a |, Oy = Pse)yE |
k h?
pa(MZ) pa (DZ)
Ocomzr) = pp(MZ) |, Ocpzr) = pp(DZ) |,
pE(MZ,T) pe(DZ,T)
pa (MZ) pa (DZ)
Ocomzay =| pp(MZ) |, and Ocpza) =| pp(DZ)
pE (MZ,A) pE (DZ,A)
Under this choice of 6y : i) a-% is determined as (Z—z‘; and
ii) O'é

as the largest root of the quadratic equation

2 2 2
O=0y+op—-0z+0E (‘TE P () B)T A +Po‘<g1>,y(E)<TD)

under the restriction that

2
OA

2 2
(0% +02)

(which ensures that o, is positive) and

== P ) S Potg)nE) S VPP (g ()

(which ensures that the covariance matrix of
{¥" (g1)1in, 6 (g1), y(E)} is gramian).

K <

Each element of H(6) =
{Zmz1(0), Zpz1(0), XMz a(0), Zpza(0)]  takes a nine-
element parameter vector 6 as its argument. As § moves
over its parameter space, yielding novel realizations
0", all possible instantiations of {P,Z,¥'(g),R,L} are
spelled out. For each realization 6, realizations
HO) = {Zmz10),Zpz7(07),Zvz4 (07),Zpz4 (07))
and h?(6*) are yielded, and, from H (8*), a realization
R(H (6%)). Though any admissible realization 6 is pos-
sible in nature, we selected a sample of 3° x 5 = 1,215
of these, generated by crossing the sets of theoretically
guided selections for {tp, a, k, Py (e, y® Po(er) y(E hz}
described below. Selection was, in fact, motivated by
imagining the phenotype in question to be psychopathy
as quantified by the PCL-R (Hare, 1991).

¢: Let the A,A, genotype represent that of "true"
psychopaths. Estimates of the proportion of true psy-
chopaths, P(A,A;) are generally contained within the
interval [.01,.25], see Hare (1991, 1996). This implies
that 42 is contained in the interval [.1,.5], and we se-
lected the values [.1,.3,.5].

a: Under the g,k parameterization, a is equal to

w (Lynch & Walsh, 1998). Because the PCL-
R assigns scores on the interval [0,63], sensible values
for a are [10,20,30]. The three sensible values were
derived by means of application of the given formula
to three pairs of conditional means: [62,2], [50,10],
[40,20]. So, these values, (62-2)/2 = 30, (50-10)/2 =
40, and (40-20)/2 = 10 are not based on any empirical
distribution of PCL values. Only on the interval of pos-
sible PCL-R scores, and candidate pairs of conditional
means, the first for the g; = 2 (psychopathy) group, and
the second, the group genetically most antithetical to
the psychopathy group; i.e., the g; = 0 group.

k: There do not exist, to our knowledge, many studies
in which k has directly been estimated. However, recent
studies (e.g., Herzig et al., 2018; Nolte et al., 2017)
suggest that the contributions from dominance genetic
components are relatively small compared to the ad-
ditive genetic components. These findings notwith-
standing, Chen et al. (2015) showed in a twin-based
analysis that while the variance of each of 19 human
complex traits was largely due to additive components,
dominance components played a larger role than had
been suggested by other studies featuring fewer com-
plex traits. In light of these findings, one should there-
fore rather aim for a broader range of dominance de-
viation effects, although it should be noted that recent
evidence suggests the majority of dominance effects to
be rather small compared to the additive effects. We
therefore chose the possible values [0,.4,.8].

Pw(ey, vE): As one can see from the relation

V(y(E)lg) = o% (1 —p?l,,(gz)ﬁn ’y(E)), this parameter con-
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trols the degree of variability of the impacts of environ-
ment on Z, conditional on subpopulations of individuals
with identical gene content. There appears to be no sci-
entific reason why the degree of variability in impacts
should differ much between the general population and
subpopulations with identical gene content. Thus, we
chose a set of values on the lower end of the spectrum,;
[0,.3,.6].

PstenyE): For this parameter, we offer precisely the
same argument, and selected the set of values, [0,.1,.3].

h*: h? is the parameter the recovery of which is un-
der investigation. As we would like to gain insight into
the recovery capabilities of the modes under a wide
range of possibilities, we selected the following values:
[.1,.3,.5,.7,.9].

The twin correlations — ps (MZ), pp (MZ), pa(DZ),
pp(DZ), pp (MZ,T), pg (DZ,T), pe (MZ,A), pg (DZ,A) -
were held constant over realizations §*. The magnitudes
of the four environment correlations can be expected to
vary over P,Z, ¥’ (g),R, L, and is very much an empiri-
cal issue. Genetic theory suggests that the first four of
these correlations should be in the vicinity of 1, 1, .5,
and .25, respectively. Because correlations of a magni-
tude of unity are empirically implausible, we selected
the following set of reasonable values: .97, .96, .52, .21,
.70, .50, .30, .05. To provide a justification for these
values: Of course, on the estimation side of the coin,
one should stick to those values that theory nominates
as most reasonable. Just because the architecture to
be estimated will be unknown, there is nothing else to
do. However, for any given architecture, nature will fix
the values of parameters; and nature is not constrained
by best present theory. It is entirely reasonable to con-
struct target architectures for which, e.g., a twin corre-
lation is set a touch less than unity. In nature, states
of affairs are dichotomous; either a given architecture
has a correlation of unity, or it does not. Theory does
not govern which is the case. Estimation will always be
in the face of individual, particular, unknown architec-
tures, and the task is to assess the performance of the es-
timators when, merely, they encounter reasonable pos-
sibilities. What is believed, theoretically, is already en-
shrined within the estimation schemes; to insist that our
models of reality accord with these assumptions is akin
to insisting that the Copernican theory be by checked
through comparison of a circle to a circle.

Of the 3° x 5 = 1,215 sampled realizations of 6",
1,080 instantiations of the architecture that satisfied the
restrictions earlier described. The set of realizations
H(#%) based on this set of 1,080 §* served, then, as in-
put into the modes. Table A1 of Appendix A shows the
range, over the 1,080 6* , of each of the induced com-

ponents o, o7, , and o%. For the structural equation

models, the number of input data points, parameters
to be estimated, and degrees of freedom, were as fol-
lows® : ACDE(12,4,8), ADE(12,3,9), ACE(12,3,9), and
AE(12,2,10).

Results
Parameter Recovery Performance of Modes

If the non-SBM architecture of study 1 happened
to be underlying an empirical setting in which 42
was being recovered, and the informational input was
(Zmzr (0),Zpz71 (0) ,Zhza (0) ,Zpz4 (0)} , how success-
fully would each of the modes be in recovering the true
h*? Our central and side issues can be addressed with
reference to Tables 1 and 2, which present a quantita-
tive summary of the model error and absolute model
error distributions, respectively. Boxplots of the five
model error distributions appear in Figure 2.

How close to the mark can a narrow-sense heritability
recovered value be expected to be? From Table 2, the an-
swer is that it depends upon the mode employed. In
particular, the ordering of the modes with respect to
the criterion of mean absolute model error (from best
to worst recovery performance) was as follows: ACDE
(.02), ADE (.04), ACE (.08), AE (.08), and Falconer
(.10).

How sensitive is h> parameter recovery performance to
the specifics of P,Z,V’ (g),R,L? The answer is that it
depends upon the mode employed. The ordering of the
modes with respect to the criterion of variance of ab-
solute model error (from least to most sensitive) was
as follows: ACE (.012), AE (.012), ACDE (.022), ADE
(.022), and Falconer (.142).

How far off the mark (how badly misrepresenting of the
true state of nature) can a recovered value be? The an-
swer, once again, is that it depends upon the mode em-
ployed. None of the modes were much at risk of under-
estimating 4>, minimum model error ranging from -0.03
(ACDE, ADE, ACE, and AE) to -0.09 (Falconer). How-
ever, all of them were susceptible to yielding substantial
upward-biased recovered values, the ordering with re-
spect to maximum model error being ACDE (0.06), ADE
(0.14), ACE (0.45), AE (0.47), and Falconer (0.66).

Relative Parameter Recovery Performance of Modes: On
all of the relevant criteria, the ordering of the modes —

6Fach matrix (twin design) contributes 3 input data points;
matrix @, the correlation matrix of latent variables, con-
tributes no parameters to be estimated (the variances are set
to unity, and off-diagonal elements are as prescribed by the
standard biometric model); the number of loadings to be esti-
mated is simply equal to the number of letters describing the
model.



Table 1

Summary of Model Error, Study 1
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h2 — h*(6)
N Mipadm.so. M SD Median Mad min max
ACDE 805 102 .02 .02 .02 .03 -.03 .06
ADE 805 3 .04 .02 .04 .02 -03 .14
ACE 805 19 .08 .10 .04 .04 -03 .45
AE 805 0 .08 .10 .05 .04 -03 47
Falconer 805 - .10 .15 .03 .04 -09 .66

Note. Model Error: h¥ — h*(6); n: Total number admissible scenarios (those satisfying inequalities); #tinadm. so..: NumMber of
inadmissible solutions; Mad: Median absolute deviation.

Table 2

Summary of Absolute Model Error, Study 1

Iy~ h*(O)l
Percentile Points
M SD .10 .20 .30 40 .50 .60 .70 .80 .90
ACDE .02 .02 .00 .01 .01 .02 .02 .03 .04 .04 .05
ADE .04 .02 .01 .02 .03 .04 .04 .05 .05 .06 .06
ACE .08 .01 .01 .02 .03 .04 .05 .06 .14 .20 .20
AE .08 .01 .01 .02 .03 .04 .05 .06 .07 .14 .20
Falconer .10 .14 .02 .02 .03 .04 .05 .09 .19 .27 .27

Note. Absolute Model Error: |2 — h2(6)|

from best to poorest performing — was ACDE, ADE, ACE,
AE, and Falconer.

Do the newer SEM-based modes outperform the classi-
cal, correlation-based modes? In this particular simula-
tion setting, the answer is an unqualified yes.

Parameter Recovery Performance of SEM-based
Modes, for Subset of Solutions with RMSEA < 0.06:
In the case of the ACDE mode, RMSEA did not exceed
0.06 for any of the admissible solutions. Accordingly,
Table 3 provides a summary of the parameter recovery
performance of ADE, ACE, and AE modes, conditioning
on the subset of admissible solutions for which RMSEA
< 0.06.

The high degree of similarity between the entries of
Tables 1 and 3 indicates that the conclusions drawn
about parameter recovery performance are in no way
confounded by the issue of model fit.

Impact of Features of Architecture on Parameter
Recovery Performance: Results of the variable impor-
tance analysis are presented in Table 4.

As is apparent from the Table 4 entries, the general
conclusion is that only k, 4%, and ¢ had notable impacts
upon h’* parameter recovery performance, with the or-
dering of these factors, in respect to overall strength of

Table 3

Summary of Model Error for solutions with RMSEA < .06,
Study 1

n M SD Median Mad min max
ADE 796 .04 .02 .04 .02 -03 .14
ACE 762 .06 .08 .04 .03 -03 .32
AE 790 .08 .09 .04 .03 -03 .42

Note. n: Number of solutions satisfying the condition RMSEA
< .06; Mad: Median absolute deviation

impact, as listed above. The modes, however, did vary
with respect to their sensitivity to these factors, with
the strongest impact being that of ¥ upon Falconer’s. In
keeping with its position as delivering the best overall
parameter recovery performance, ACDE was the least
affected by the factors. As can be seen from R? values of
about 0.94, most of the variance in model error could be
explained. As indicated by heterogeneous ICE curves’,

"For the sake of stringency, these multiple graphs can
be found in the electronic supplementary material on
https://osf.io/aq9sx/, under a CC-BY4.0 license.
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Figure 2

Box plots with jittered data points of the empirical distribution of model error h?> — h*(), Study 1
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Type of Model

the predictor impacts of k, 4%, and ¢ on h* model error ~ Simulation Study 2
were characterized by interaction effects, particularly .
. ) Introduction

pronounced for population A°.
The second study was identical to the first, ex-

cept that the input into each mode was H =

{Zmzr (0),Zpz7 (0)). The interest here was in the re-

covery performance of the modes under this reduced



Table 4

Variable Importance Analysis, Study 1
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Input Parameter

a k ¢ Pyrigytiny®  Potgn®) h R
ACDE 0.0000 0.0008 0.0001 0.0000 0.0000 0.0002 .96
ADE 0.0002 0.0007 0.0001 0.0000 0.0000 0.0002 .91
ACE -0.0002 0.0141 0.0022 -0.0002 -0.0002 0.0033 .95
AE -0.0001 0.0132 0.0023  -0.0002  -0.0002 0.0031 .95
Falconer -0.0005 0.0338 0.0051 -0.0005 -0.0006 0.0073 .95

Note. a: additive parameter; k: Dominance parameter; ¢: P(A,) or proportion of alleles of type A; Py:(s,)/1in,): correlation
between additive component and environmental impact; Ps,),r): correlation between dominance component and
environmental impact; 4*: narrow heritability; R*: Multiple R?

informational input.

Details of Construction

For the structural equation models, the number of
input data points, parameters to be estimated, and
degrees of freedom were as follows: ACDE(6,4,2),
ADE(6,3,3), ACE(6,3,3), and AE(6,2,4). A possible con-
fusion concerning the reported positive number of de-
grees of freedom of the ACDE model might arise here.
According to Ozaki, Toyada, Iwama, Kubo, and Ando
(2011), the number of degrees of freedom should be -1
because the covariance matrix of the observed variables
contains three observations (one variance and two co-
variances), but the ACDE model contains four free pa-
rameters, hence df = 3 — 4 = —1. However, one must
keep in mind that each covariance matrix of MZ and
DZ twins consists of k(k + 1)/2 observations (where k is
the number of observed variables). Consequently, we
have 2(2(2+1)/2 = 6 observations, not three. Therefore,
the correct number of degrees of freedom in this case is
6 —4 = 2, not -1. An interesting wrinkle was that, the
positive degrees of freedom notwithstanding, none of
the ACDE models were identified in study 2; though, of
course, certain functions of model parameters may have
been. Appendix B provides a formal explanation that
the ACDE model is identified in study 1 and 3 but not
in study 2. The non-identifiability of the ACDE model
in study 2 notwithstanding, we kept the ACDE model to
see how well it would perform under this non-identified
state of affairs.

Results
Parameter Recovery Performance of Modes

Tables 5 and 6 present a quantitative summary
of the model error and absolute model error distri-
butions when the modes faced the non-SBM archi-
tecture of study 2, and the informational input was

{Zmzr (0),Zpz7 (0)). Boxplots of the five model error
distributions appear in Figure 3. In such an empirical
setting, our central and side issues can be answered as
follows.

How close to the mark can a narrow-sense heritabil-
ity recovered value be expected to be? From Table 6, the
answer is that it depends on the mode employed. In
particular, the ordering of the modes in terms of the cri-
terion of mean absolute model error (from best to worst
recovery performance) was as follows: ADE (0.05), ACE
(0.08), AE (0.09) Falconer (0.10), and ACDE (0.29).

How sensitive is h> parameter recovery performance to
the specifics of P,Z, V' (g),R,L? The answer is that it
depends on the mode employed, the ordering of the
modes with respect to the criterion of variance of ab-
solute model error (from least to most sensitive), as fol-
lows: ADE (0.042), ACE (0.082), AE (0.092), Falconer
(0.102), and ACDE (0.292).

How far off the mark (how badly misrepresenting of
the true state of nature) can a recovered value be? In the
direction of downward-bias, the ordering of the modes
(from least to most severe downward-bias) was ADE
and AE (-0.02), ACE and Falconer (-0.09), and ACDE
(-0.88); in the direction of upward-bias (from least to
most severe upward-bias), ACDE (0.04), ADE (0.31),
ACE and AE (0.49), and Falconer (0.66). Evidently,
then, there exists an interaction between mode and di-
rection of model error, with ACDE susceptible to mis-
calculate #?> as much smaller than its true value, and
Falconer, AE, ACE, and AE, susceptible to misrepresent
it as much larger.

Relative Parameter Recovery Performance of Modes: In
the present case, it was much less straightforward to de-
rive an overall parameter recovery performance order-
ing of the modes. On the criteria of expected closeness
to the mark and sensitivity to the particulars of the ar-
chitecture in play, the modes were ordered (from best to
worst) as follows: ADE, ACE, AE, Falconer, and ACDE.
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Table 5

Summary of Model Error, Study 2

h2 — h*(6)
n Minadm.sol. M~ SD Median Mad min max
ACDE 805 0 -29 .20 -.27 25 -88 .04
ADE 805 4 .05 .04 .05 .02 -02 .31
ACE 805 3 .07 .11 .03 .04 -09 .49
AE 805 0 .09 .10 .05 .04 -02 .49
Falconer 805 - .09 .15 .03 .04 -09 .66

Note. Model Error: h? — h*(6); n: Total number admissible scenarios (those satisfying inequalities); #tinadm. so..: Number of
inadmissible solutions; Mad: Median absolute deviation.

Table 6

Summary of Absolute Model Error, Study 2

I} — k()|
Percentile Points
M SD .10 .20 .30 40 .50 .60 .70 .80 .90
ACDE 29 20 .04 .09 .17 .20 .27 .33 .40 .47 .56
ADE .05 .04 .02 .03 .03 .04 .05 .05 .06 .07 .09
ACE .08 .10 .01 .02 .02 .03 .04 .05 .08 .15 .21
AE .09 .10 .02 .03 .04 .04 .05 .06 .09 .15 .22
Falconer .10 .14 .01 .02 .02 .03 .04 .05 .09 .19 .27

Note. Absolute Model Error: |h2" — h2(6)|

However, as noted previously, ACE, AE, and Falconer
were susceptible to delivering large upward-biased val-
ues.

Do the newer SEM-based modes outperform the classi-
cal, correlation-based modes? In this particular setting,
the answer depends on the criterion chosen. On most,
Falconer’s occupies a mid-pack positioning. Certainly, in
this setting, it cannot be concluded unequivocally that
an SEM-based mode will outperform the classical Fal-
coner’s coefficient.

Parameter Recovery Performance of SEM-based
Modes, for Subset of Solutions with RMISEA < 0.06:
There were admissible solutions with an RMSEA that
exceeded 0.06 only in the case of the ACE and AE
modes. Accordingly, Table 7 provides a summary of the
parameter recovery performance of these two modes,
conditioning on the subset of solutions for which RM-
SEA < 0.06.

Comparing Tables 5 and 7, makes clear that the
conclusions we draw about parameter recovery perfor-
mance are in no way confounded by the issue of model
fit.

Impact of features of architecture on parameter re-
covery performance. Results of the variable importance

analysis are presented in Table 8.

As is apparent from the Table 8 entries, the general
conclusion is that only k and h* impacted upon h* pa-
rameter recovery performance. The ordering of these
factors in respect strength of impact, was, for ACDE and
ACE, h? followed k, and, for all other modes, k followed
by h*. With R? values of about .93 most of the vari-
ance in model error could be explained. Once again, for
all of the modes, heterogenous ICE curves for 4* and k
suggested that the impacts, especially of population /2,
were attributable to interaction effects.

Simulation Study 3
Introduction

In this third study, we assessed the param-
eter recovery performance of the modes when
they encounter a multilocus architecture with the
non-SBM properties of dominance effects, genetic-
environment (either one or both of gene content-
environment and dominance-environment) correlation,
and epistasis, and the informational input is H
(Zmzr (0),Zpz7 (0) ,Zmz4 (0) ,Zpza ()},
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Figure 3

Box plots with jittered data points of the empirical distribution of model error h* — h*(6), Study 2

0 _|
o .
. !
..l~f5,;
Yex
—_— s *
5 2 e "
£ O e e
6 ’:_. Iy
© 2, '.;
o
2 ‘._k-':.j
'.!-;{
e
0 5
oS RO
[ ;r'
‘._'.f‘\&
"
P Y
e
—_—
[ [ [ [ [
AE ADE ACE ACDE Falconer
Type of Model
Table 7

Summary of Model Error for solutions with RMSEA < .06, Study 2
n M SD Median Mad min max

ACE 778 .06 .09 .03 .03 -09 41
AE 783 .08 .08 .05 .04 -02 .49

Note. Model Error: h¥ — h%(); n: Number of solutions satisfying the condition RMSEA < .06; Mad: Median absolute deviation.
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Table 8

Variable Importance Analysis, Study 2

Input Parameter

a k ¢ Pyrigytiny®  Potgn®) h R
ACDE 0.0023 0.0049 0.0019 -0.0014 -0.0015 0.0585 .91
ADE 0.0005 0.0012 0.0004 0.0000 0.0000 0.0004 .90
ACE -0.0001 0.0187 0.0026 -0.0003 -0.0003 0.0036 .96
AE 0.0001 0.0132 0.0027  -0.0002  -0.0002 0.0030 .95
Falconer -0.0008 0.0516 0.0074 0.0000 -0.0004 0.0107 .95

Note. a: additive parameter; k: Dominance parameter; ¢: P(A,) or proportion of alleles of type A; Py:(s,)/1in,): correlation
between additive component and environmental impact; Ps,),r): correlation between dominance component and
environmental impact; 4*: narrow heritability; R*: Multiple R?

Details of Construction

The number of loci, n, was set to three, and—
following Zuk et al. (2012), who provide argument as
to its “ecological validity”—the genotypic function ¥’(g)
was chosen to be max(¥’(g;), j = 1..3). This non-additive
limiting process architecture (see Zuk et al., 2012) in-
duces epistasis in an empirically realistic fashion. We
employed {a, k} parameterization, once again, and pa-
rameterized the architecture in terms of the following
vectors: Ogen = {g,a,k}, wherein the jth element of
each of the 3-The vectors ¢, q, and k is ¢;,a;, and k; re-

Z?:] PB;y(E) PAMD)
. . _ ‘3 . — pD(MZ) .
spectively; Oy =| 2o ps,pe) |5 Ocmzr) = pep(MZ) |
3 2
et Py /b £(MZ,T)
pa(MZ) pa(DZ)
pp(MZ) pp(DZ) i
0 _ ,and 0 = . This
C(MZ.A) oep(MZ) C(DZ,A) pep(DZ)
£(MZ,A) £(DZ, A)

particular choice of 8y implies that: i) o2 is determined
as o2 /h?; and ii) o2 is the largest root of the quadratic
equation,

0=0%+05+05p+0

3 3 3
[O' Et PB;y(E)TA T+ Ps;E)0TD t+ Pl (E)T EP] s
j=1 J=1 =1

2
o

under restriction that 7> < ——2—— and [¥| > 0,
(o4+0p+0og,)
2
op 0 0 pypye
whereinX=[ 0 o} (2) P3.5,4(E)
0 0 o0 Prywe/og

Realizations of 8" were produced by crossing the fol-
lowing sets of parameter selections:

o o for j=1.3,[1,.3,.5];

e a: for j=1..3,[10, 20, 30];
e k: for j=1.3,1[0,.2,.4];

. 3, ByE): [0, .3,.6];

o Py, 5B [0,.1,.3];

* PR e [0,.2,.5];

e 1% [.1,3,.5,.7,.9];

® PAMZ)> PD(MZ)> PEP(MZ)> PA(DZ)> PD(DZ)> PEP(DZ)> PE(MZ,T)>
PE(DZT)s PE(MZA)> PE(DZA)-
[.97,.96, .95,.52,.21,.5,.7,.5, .3, .05].

Of the 39 x 3% x5 = 2,657,205 sampled realizations of
0", 2,174,537 yielded instantiations of the architecture
which satisfied the restrictions earlier described. The
set of realizations H(8") based on this set of 2,174,537
0" served, then, as input into the modes.

Results
Parameter recovery performance of modes

Tables 9 and 10 present a quantitative summary of
the model error and absolute model error distributions,
when the modes were faced with the multilocus non-
SBM architecture of study 3 and informational input
was {ZMZ,T(O),ZDZ,T(O)’ EMZ,A(G)’ EDZ,A(G)}- BOXPIOtS of
the five model error distributions appear in Figure 4.
In such an empirical setting, our central and side issues
can be answered as follows.

How close to the mark can a narrow heritability recov-
ered value be expected to be? Table 10 shows that, with
respect to the criterion of mean absolute model error,
all the SEM-based modes delivered precisely the same
parameter recovery performance (.08). Falconer’s coef-
ficient performed marginally better (.06).



Figure 4

Box plots with jittered data points of the empirical distribution of model error h? — h*(6), Study 3
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Note. Individual data points (blue dots) are based on a random selection of 5000 cases.
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Table 9

Summary of Model Error, Study 3

n? — h*(6)
n Rinadm.sol. M SD Median Mad min max
ACDE 1,963,413 3,312 .08 .06 .06 .05 -90 .45
ADE 2,174,537 98 .08 .06 .07 .05 -30 .47
ACE 2,174,537 4,280 .08 .06 .06 .05 -01 .46
AE 2,174,537 275 .08 .06 .07 .05 -30 .47
Falconer 2,174,537 - .05 .06 .04 .04 -07 .48

Note. Model Error: h? — h?(6); n: Total number admissible scenarios (those satisfying inequalities); #inadm. so..: Number of
inadmissible solutions; Mad: Median absolute deviation.

Table 10

Summary of Absolute Model Error, Study 3

Ih} = ©O)|
Percentile Points
M SD .10 .20 .30 40 .50 .60 .70 .80 .90
ACDE .08 06 .02 .03 .04 .05 .06 .08 .10 .13 .17
ADE .08 .06 .02 .03 .04 .05 .07 .08 .10 .13 .18
ACE .08 .06 .02 .03 .04 .05 .06 .08 .10 .13 .17
AE .08 .06 .02 .03 .04 .05 .07 .08 .10 .13 .18
Falconer .06 .06 .01 .01 .02 .03 .04 .05 .07 .10 .15

Note. Absolute Model Error = [h? — h2(9)|

Table 11

Summary of Model Error for solutions with RMSEA < .06, Study 3

n M SD Median Mad min max
ADE 1,963,403 .08 .06 .07 .05 -30 .46
AE 1,963,320 .08 .06 .07 .05 -01 .46

Note. n: Number of solutions satisfying the condition RMSEA < .06; Mad: Median absolute deviation.

How sensitive is h> parameter recovery performance to
the specifics of P,Z, ¥’ (g),R,L? The answer is that, the
five modes were equally sensitive, the variance of each
of the five absolute model error distributions equal to
.06,

How far off the mark (how badly misrepresenting of
the true state of nature) can a recovered value be? In the
direction of downward-bias, the ordering of the modes
(from least to most severe downward-bias) was ACE (-
.01), Falconer (-.07), ADE (-.30), AE (-.30), and ACDE
(-.90). In the direction of upward-bias, the modes were
tightly packed within the .45 to .48 interval. Evidently,
all the modes were susceptible to misrepresent the mag-
nitude of heritability deriving from a multilocus archi-
tecture of the present type as much larger than it actu-

ally is; all but Falconer and ACE were susceptible, addi-
tionally, to misrepresent it as much smaller than it actu-
ally is.

Relative parameter recovery performance of modes.
Save for the fact that Falconer’s and ACE were not sus-
ceptible to yielding large down-ward biases, there was
not much to choose between the modes.

Do the newer SEM-based modes outperform the clas-
sical, correlation-based? When the underlying architec-
ture is a multilocus, non-SBM, architecture of the sort
considered, herein, the answer is, clearly not.

Parameter recovery performance of SEM-based
modes, for subset of solutions with RMSEA < .06.
Only in the case of the AE and ADE modes, were there
admissible solutions for which RMSEA exceeded .06.



Accordingly, Table 11 provides a summary of the param-
eter recovery performance of AE and ADE, conditioning
on the subset of solutions for which RMSEA < .06.

The high degree of similarity between the entries of
Tables 9 and 11, indicates that the conclusions we draw
about parameter recovery performance are in no way
confounded by the issue of model fit.

Impact of features of architecture on parameter re-
covery performance. Results of the variable importance
analysis are presented in Table 12.

As is apparent from the Table 12 entries, the gen-
eral conclusion is that only 4*> and a had notable im-
pacts upon h’> parameter recovery performance. Most
of the variance in model error could be explained, as
indicated by R? values of about .95. For all the modes,
ICE curves were predominantly homogeneous, largely
following the same course, which indicates that these
impacts were attributable mainly to additive effects®.

Discussion

The results of our investigation suggest that con-
clusions regarding our focal issue must be drawn
conditional on a number of different factors: a) the
general class of generating architecture in play; b)
specifics of the architecture’s parametric instantiations;
c) the informational input into a mode; and d) the
particular mode employed. In Study 1, the modes
confronted 1,080 instantiations of a single locus
architecture which had the non-SBM properties of
dominance effects and either one or both of gene
content-environment, and dominance-environment,
correlation. The informational input was a set of
population covariance matrices under the four twin
designs: monozygotic-reared together, monozygotic-
reared apart, dizygotic-reared together, and dizygotic-
reared apart: {Zyz7 (), Zpzr (), Zmza (0),Zpza (6)}. In
this setting: a) on all recovery performance criteria,
the ordering of the modes was (from best to poorest
performing) ACDE, ADE, ACE, AE, and Falconer’s;
b) the overall h* recovery performance delivered by
the modes (as quantified by mean absolute model
error) ranged from a best of .02 (ACDE) to a worst
of .10 (Falconer’s); c) the sensitivity of the modes to
the architecture’s parametric specifics (quantified by
the variance of absolute model error) ranged from a
best of .022 (ACDE) to a worst of .142 (Falconer’s);
and c¢) the susceptibility of the modes to yielding
downward-biases ranged from a best of -.03 (ACDE,
ADE, and ACE) to a worst of -.09 (Falconer), and to
upward-biases, from a best of .06 (ACDE) to a worst of
.66 (Falconer’s). Random forest analyses on the impact
of genetic parameters on the model error of 4* revealed
that only k (genetic dominance), #*> (population narrow
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heritability), and ¢ (proportion of alleles of type A2)
had notable impacts upon A’ parameter recovery
performance. Average explained variance in model
error across models was .94.

In Study 2, the modes confronted the same 1,080
instantiations of the single locus architecture featured
in study 1, but with the reduced informational input
{Zmzr (0),Zpz7 (0)). In this empirical context: a) the
ordering of the modes was not identical over recovery
performance criteria; b) the overall 4> recovery perfor-
mance of the modes ranged from a best of .05 (ADE) to
a worst of .29 (ACDE); c) the sensitivity of the modes
to the architecture’s parametric specifics ranged from
a best of .042 (ADE) to a worst of .202 (ACDE); c) the
susceptibility of the modes to yielding downward-biases
ranged from a best of -.02 (ADE and AE) to a worst
of -.88 (ACDE), and to upward-biases, from a best of
.04 (ACDE) to a worst of .66 (Falconer’s); and d) there
existed an interaction between mode and direction of
bias, with ACDE susceptible to reporting h2 as much
smaller than its true value, and Falconer, AE, ACE and
AE, susceptible to reporting it as much larger. Random
forest analyses on the impact of genetic parameters on
the model error of h2 showed an effect of k (genetic
dominance) and h2 (population narrow heritability) on
h?* parameter recovery performance with an average ex-
plained variance in model error across models of .95.

In Study 3, the informational input was
{Zmzr (0),Zpz7 (0) ,Zpza (0)} and the modes confronted
a multilocus architecture with the non-SBM properties
of dominance effects, genetic-environment correlation,
and epistasis. In this case: a) there was not much to
choose between the modes; b) the SEM-based modes
had precisely the same overall h*> recovery performance
(.08 mean absolute model error), with Falconer’s,
marginally better at .06; c) the modes had identical
sensitivity to the architecture’s parametric specifics, the
variance of absolute model error being .062 for each
and every one of them; d) the susceptibility of the
modes to yielding downward-bias ranged from a best of
-.01 (ACE) to a worst of -.90 (ACDE); and d) in respect
their susceptibility to yielding upward-biases, they were
tightly packed within the .45 to .48 interval. Random
forest analyses revealed that only h*> (population
heritability) and a(j) (locus j additive parameter)
had notable impacts upon h> parameter recovery
performance, with an average explained variance in
model error across models of .95. This finding is of
particular importance because it answers one of the

8For the sake of stringency, these multiple graphs can
be found in the electronic supplementary material on
https://osf.io/aq9sx/, under a CC-BY4.0 license.
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main questions of this article regarding the impact
of dominance genetic variation within a multilocus
architecture. Given these results, non-additive genetic
effects as induced by the dominance parameter k had
no notable biasing influence on the recovery of h?, at
least not under the multilocus scenario of this study.
Hence, dominance genetic variation did not contribute
to the missing heritability as it did not substantially
bias 4 values (see also Zhu et al., 2015 for similar
conclusions).

We acknowledge, of course, that we do not know the
degree to which our constructed architectures approxi-
mate to those extant in nature. We would remind our
readers, however, that those who employ, in their re-
searches, the various modes to estimate %%, do so un-
der the very same blanket of uncertainty over the actual
form of the genetic architecture in play. We do not claim
that the results we present are the final word on the
performance of each of the modes in estimating 4?; only
that they provide an indication as to the trustworthiness
of the estimates yielded by each mode when encounter-
ing several paradigm cases.

We note, also, with due circumspection, given the
small scale of the design, what appear to be the follow-
ing trends:

1. It seems that the more complicated the generat-
ing architecture, the less trustworthy will be the
h2 recovered by a given mode. Even though, in
Study 3, the poorest average model error yielded
by a mode was only .08, all of the modes were
susceptible to producing narrow-sense heritability
recovered values widely off the mark. This may be
seen as somewhat worrisome, for the reason that
a given scientist will estimate the heritability in-
herent to a particular, unknown, architecture, and
the resulting publication will present to the scien-
tific community this single take on the magnitude
of heritability. The relevant question is, “how far
off the mark might it be”; not, “how far off the
mark is the average of the population of estimates
from which it was drawn.” This estimate will have
the impact upon scientific thought; not some un-
known average of which it is a part;

2. For all of the modes, save Falconer’s (which does
not employ the additional information available
in Studies 1 and 3) and AE, the less rich is the in-
formational input, the poorer is the 4> parameter
recovery performance.

In light of the popularity of estimating 4%, and other
quantitative genetic parameters, through the fitting
of latent variable models, an interesting sub-finding

is that, although, in each of the studies, the SEM-
based modes were confronted with architectures which
they misspecified, precious few solutions were signalled
— by the RMSEA > .06 criterion— as poorly fitting.
Even when faced with the most complicated of our
architectures- the multilocus architecture of Study 3-
instances of misfit were registered only for the AE and
ADE models. This suggests, once again, the inadvisabil-
ity of depending upon empirical fit indices to shed light
upon underlying causal structure, in general, and phe-
notypic (genetic) architecture, in particular (c.f. CIiff,
1983; Long, 1981; MacCallum et al., 1993; Tomarken
and Waller, 2003).
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Appendix A

Table A1l

Range over architectures of proportion of variance due to
additive, dominance, and environment component for the
conditions satisfying the inequalities, Scenarios 1 and 2.
M Min Max Range
Additive 45 .10 .90 .80
Dominance .08 .00 .44 44
Environment .04 .00 .24 .24

Table A2

Range over architectures of proportion of variance due to
additive, dominance, and environment component for the
conditions satisfying the inequalities, Scenario 3
Min Max Range
Additive .10 .90 .80
Dominance .00 .32 .32
Environment .00 1 1
Epistasis .00 .71 71

Appendix B

On the Identifiability of the ACDE Model

The following answers the question under
which of the scenarios realized in our study the four
model parameters {a,b,c,d} of the ACDE model are
identified. The informational input of the three scenar-
ios realized in the study to estimate the model parame-
ters {a, b, c,d} are:

* Scenario 1; single-locus with dominance effects
and genetic-environment covariance): The infor-
mational input is {ZMZ,T, ZDZ,T’ ZMZ,A, ZDZ,A}'

* Scenario 2; identical architecture as scenario 1 but
the informational input is {Evz1, Zpz1}-

e Scenario 3 (multi-locus with dominance effects,
genetic-environment covariance, and epistatic in-
teractions). The informational input is {Iyzr

D7,y EMZ,As ZDZA}-

1. Let R{IMZ (monozygotic), DZ (dizygotic) } and
L{ T (reared together), A (reared apart)};

2. The input into the SEM is
{Zmz1(0), Zpz7(0), ZmzA(0), Zpz.A(0)};

3. The four model implied covariance matrices are;

Surp7(0) = A +ct+d+é @+ +d
MZT ) = a+ct+d? A+ +d+ e
Saiza(0) = a+ct+d*+e? a + c?
MZ AR = a* + ¢ a*+ A+ d> + &

0.54% + 0.25¢% + d?
a2+ +d?+ 2
0.5a% + 0.25¢2

A+t +d+ e

a+E+d*+ e
Zoz;r(6) = [ 0.5a +0.25¢* + 2
P+t +d*+ e
0.54% + 0.25¢%

ZpzA(0) =

4. Question; can the four model parameters
{a,b,c,d} be expressed as functions of the 4 x 3
= 12 input parameters; i.e., with respect the input
(2) and the multi-population model (3), are the
model parameters identified.

5. Answer: Yes.

6. Proof.
Let the total variance be T = a® + ¢* + d* + €.
: &P _ _ TMzT[1.2) _
61. T - pMZ’T pMZ’A - O MZT[1.,110 MZ,T[2,2]
O MZ,T[1.2]

O MZA[1,110 MZ.A[2.2]
@+ +d - (d+ )
=d+*+d - 1(a* +?)
=+t +d - -

<a2 - az) + <c2 - c2) +d?

=4?
2
.. ; B i
6ii. < = 2 (pmza — 2Pmz.n) =
O MZ.A[1,2] _ O DZA[1.2]
\/O—MZ.A[]‘I]U'MZ‘A[Z,ZI \/O—DZ,A[I.I]O—DZ,A[Z.H

Hence,

a@+ct-2 (.Sa2 + .25C2)
=d*+c* —a* - .5
= (a2 - az) - (c2 - .5c2)
= .5¢2

and therefore ¢ =2 - .5¢2%.
&2
6iii. T = 4ppza — PMzA =
( 0 DZ,A[1,2]

_ O MZ.A[1,2]
VO DZA[I1T DZA2.2] VOMZA11TMZA2.2)



https://doi.org/10.1073/pnas.1119675109
https://doi.org/10.1073/pnas.1119675109

note, by the way, that this is /.
Hence,

4 (.5a2 + .2502) - (a2 + 02)
=2 +b*-a* - b’
= az

6iv.e =1-C+5+&

6v.T is obviously overidentified, as, under the
model, it is equal to 8 different input parameters (i.e.,
the 2 x 4 = 8 distinct variances).
. up to an indeterminacy in the signs
of {a,b,c,d} [standard for all linear factor struc-
tures], the 4 model parameters are identified;
ergo, the ACDE model is identified for the input
{ZMZ,T(O): EDZ,T(G), ZMZ,A(O),ZDZ,A(G)}- Hence, the ACDE
model is identified under scenarios 1 and 3 . It is, how-
ever, not identified under scenario 2 as we can see in
the following.

Question: Can the four model parameters
{a, b, ¢, d} be expressed as functions of the 2x3 = 6 input
parameters under scenario 2; i.e., with respect the input
2)?

7. Answer: No.

8. Proof.
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Let the total variance be T = a® + ¢* + d* + €.
The implied covariance matrices of study 2 are

. T a+ 2+ d?
8i. Zuzr@)=| -, 2, p T

) T S5a* + 256 + d°
8il. 2pz.1(6) = [ Sa® + .25 + d&* T

Now,

8111 62 = 0'2 - O—MZ,T[I,Z];

whereby ¢ is the common environmental vari-
ance.

Regarding the identifiability of c? and d” we get:

8iv. T = pmzr —2ppz7T = OMzTI 2 — 20 DZT(12)

Hence, in terms of model parameters

8v. @’ +c* +d* - 2(5d” + 25 + d°)
=a*+ct+d* - (a2 +.5¢% + 2d2)
=a*+ P +d*> - d® - 52 =24
= (a2 - az) + (02 - .502) + (d2 - 2d2)
=57 -d*
8vi. T is obviously underidentified, as, un-
der the model, there is no unique expression for c?.

Hence, the ACDE model is not identified with {Zyz.1(6),
Zpz1(0)}.
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