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In this paper a method is proposed to determine whether the result from an original
study is corroborated in a replication study. The paper is illustrated using two repli-
cation studies and the corresponding original studies from the Reproducibility Project:
Psychology by the Open Science Collaboration. This method emphasizes the need to
determine what one wants to replicate from the original paper. This can be done by
translating the research hypotheses formulated in the introduction into informative
hypotheses, or, by translating the results into interval hypotheses. The Bayes factor
will be used to determine whether the hypotheses resulting from the original study are
corroborated by the replication study. Our method to assess the successfulness of repli-
cation will better fit the needs and desires of researchers in fields that use replication
studies.
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Introduction

People will walk more slowly when primed with
words related to being old was the result of a study by
Bargh et al. (1996). However, the replication study by
Doyen et al. (2012) failed to corroborate the results.
This study became one of the examples of the existence
of the so-called replication crisis in the behavioral sci-
ences; results obtained in a study are often not corrob-
orated by its replication. The question is now: what
should we believe? How can we rely on results from
scientific research in the behavioral sciences if they con-
tradict each other so often? But first: do they actually
contradict each other? We will focus on the question
how it can be determined whether a replication study
supports the earlier study. We will propose two methods
to translate an original paper into a hypothesis: either
based on the theory, or on the results. Subsequently, the
data resulting from the replication study will be used to
evaluate these hypotheses with the Bayes factor.

We will illustrate this paper with two studies from
the Open Science Collaboration (OSC) Reproducibility
Project: Psychology (OSC, 2012, 2015). For each of
100 psychological experiments, an exact (Hüffmeier et
al., 2016) replication study was executed by researchers
from the OSC, using a procedure as similar as possi-
ble to the original study and indicating in detail any
methodological differences between the original study
and the replication study. Furthermore, the sample size
for the replication study was determined based on a
power analysis. The statistical analyses in the replica-
tion studies were the same ones as used in the original
studies. The goal was to evaluate whether the results

of the replication study corroborated the original study;
which would mean it was a successful replication. In
this project, only 36% to 47% of the original studies was
successfully replicated. Since the OSC consists mainly
of studies comparing group means, our focus will be on
ANOVAs, although the ideas can easily be translated to
other statistical models.

It is open for debate how many studies within the
OSC (2012, 2015) were replicated. This is due to the
fact that different methods were used to determine the
success of the replications. Throughout the literature,
different kinds of methods are used to evaluate repli-
cation studies. Anderson and Maxwell (2016) iden-
tify six different goals when evaluating successfulness of
replication studies, and present for each goal a suitable
method to analyse it: significance-based, null effect infer-
ring, effect size estimating, meta-analysis, assessing incon-
sistency, and assessing consistency. We will discuss these
methods, along with some of the critiques. Both the
third, effect size estimation, and fourth, meta-analysis,
do not focus on testing whether a replication study cor-
roborates the results of the original study. Therefore we
will not discuss these methods. Then, we will introduce
our methods as an additional and innovative option be-
cause in contrast to the other approaches we formulate
the replication hypotheses explicitly based on the theory
or results presented in the original paper.

The significance-based method was done by testing
whether the effect observed in both the original and the
replication study was significant. It is also referred to
as vote counting (Anderson & Maxwell, 2016; Simon-
sohn, 2015; Zondervan-Zwijnenburg et al., 2019). If
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the statistical tests provide the same answer (e.g. both
significant or both non-significant), and the direction of
the effect is the same, the study is considered to be repli-
cated. The problem with this approach is that while an
original study with a p-value of .04 is not considered to
be replicated if the replication study finds a p-value of
.06, the same original study is replicated when the repli-
cation study finds a p-value of < .001. Interestingly, the
difference between a p-value of .04 and .06 is not neces-
sarily significant itself (Gelman & Stern, 2006) For fur-
ther research in line with the significance-based method
we refer to Etz and Vandekerckhove (2016), Ly et al.
(2018), Marsman et al. (2017), Simonsohn (2015), and
Verhagen and Wagenmakers (2014).

The second method discussed in Anderson and
Maxwell (2016) was null effect inferring. In this method,
usually called equivalence testing, the null hypothesis
that there is a relevant effect is tested against the al-
ternative hypothesis, that there is not a relevant effect.
This is done by establishing a "region of indifference"
(Anderson & Maxwell, 2016). This region identifies
which results are essentially zero, assuming that find-
ing an effect of exactly zero is nearly impossible. If then
the 90%-confidence interval (90%-CI) around the effect
found in the replication falls completely in this region
of indifference, the hypothesis that there is a relevant
effect has to be rejected in favor of the hypothesis that
there is not a relevant effect. If it (partially) lies outside
this region, the hypothesis that there is relevant effect
can not be rejected. An issue with this method is that it
is difficult to determine the width of the region of indif-
ference. The interested reader is referred to Simonsohn
(2015) who specifies such an interval using a Cohen’s d
of .1, however, without providing an argument for this
specific interval. Furthermore, the results of the original
study are disregarded when deciding to accept or reject
the null hypothesis. That is, the region of indifference
is determined without taking into account the data and
results from the original study, in the next method the
original study does have a role when determining the
hypotheses of interest.

Assessing inconsistency is an answer to the cri-
tique that the difference between significant and non-
significant is often not significant itself (Gelman &
Stern, 2006). It is a test of the heterogeneity of the
effect sizes resulting from the original and replication
study. It is performed by calculating a confidence inter-
val around the difference in effect sizes. It is a sophisti-
cated method to assess the similarity between the origi-
nal and replication study. Since only one effect size per
study can be included in the analysis at once the method
of Assessing inconsistency only properly works for t-tests,
which makes it somewhat limited. Our method will ex-

tend on this method but will be suitable for ANOVAs as
well. Another application of this method can be found
in Patil et al. (2016), though their method is limited
to a confidence interval for the original study. Further-
more, as Morey and Lakens (n.d.) also highlighted, their
method requires well-powered original and replication
studies. The latter is not unique to Patil et al.’s ap-
proach, and will further be discussed later in this paper.

Last Anderson and Maxwell (2016) identify the
method called assessing consistency. This method com-
bines the methods two (equivalence testing) and five
(assessing inconsistency): they test if the CI around the
difference in the effect sizes falls within a subjectively
determined region of indifference. As with the second
method: the width of the interval is subjectively deter-
mined. But, as Anderson and Maxwell (2016) mention
themselves: only with very large sample sizes the CI will
be small enough to reasonably expect it to fit within the
region of indifference. In all applications without very
large sample sizes, this method will never confirm that
the effect sizes are equal.

Three issues apply to both the first two and the
last two methods identified by Anderson and Maxwell
(2016). First, all methods result in a dichotomous inter-
pretation of the test results: either the results from the
original study are replicated or they are not. However,
although this is often ignored, there are error probabili-
ties associated with these decisions: if the null hypothe-
sis is rejected there is usually a Type I error of 5% prob-
ability that this is incorrect, and if the null hypothesis is
not rejected, there is an unknown (because the popula-
tion effect size is not known) Type II error probability
that the null hypothesis is incorrectly not rejected. Sec-
ond, the methods test just one hypothesis at a time. As
we will show in this paper, sometimes researchers want
to test multiple competing hypotheses. This can be the
case in, for example, a two-way ANOVA, where the goal
may be to determine if none, one, or both possible main
effects are present (as is the case in the study by Janssen
et al. (2008). Third and last, all methods test a (in-
terval) hypothesis against the corresponding alternative
hypothesis. As will be shown in this paper our approach
also allows for a class of more flexible hypotheses that
are called informative hypotheses (Hoijtink, 2012).

The approaches proposed in this paper is a new and
innovative addition to the approaches identified by An-
derson and Maxwell (2016). First, we use the Bayes
factor (BF) (Hoijtink, Gu, et al., 2019b; Kass & Raftery,
1995) which replaces dichotomous decisions by a quan-
tification of the support in the data for each of the hy-
potheses involved. Use of support as quantified by the
Bayes factor is elaborated by Morey et al. (2016). It is
an alternative for Popperian falsification (Popper, 1963)
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called logical positivism. The interested reader is re-
ferred to Hawthorne (2021) for an elaboration of log-
ical positivism, that is, the philosophical foundation of
using the BF as a measure of support for the hypothe-
ses of interest. Second, we allow for the evaluation of
multiple hypotheses at once, with the additional benefit
that the methods can be applied to ANOVAs and t-tests
while the other approaches are mostly tailored to the t-
test. Third, we force the replication researcher to make
an informed decision about the formulation of the repli-
cation hypotheses.

The BF was already proposed by Anderson and
Maxwell (2016) to evaluate the results of replication
studies. As will be elaborated later, the Bayes factor
measures the relative support in the data for two or
more competing hypotheses. The BF has been used pre-
viously to evaluate replication studies. Some of these
studies used the ANOVA or t-test null hypotheses (Etz
& Vandekerckhove, 2016; Harms, 2018; Ly et al., 2018;
Marsman et al., 2017) versus a one- or two-tailed al-
ternative hypothesis. Other studies using the BF only
focused on t-tests (Field et al., 2019; Marsman et al.,
2017; Van Aert & Van Assen, 2017).

Cho and Abe (2013) addressed the fact that re-
searchers do not always test the correct hypothesis. Of-
ten, this involves testing the null hypothesis, which was
previously criticized by Gigerenzer (2004). We argue
that oftentimes retesting the null hypothesis is not in
line with the goals of the replication researchers, who
want to determine if the replication study corroborates
the results from the earlier study. To test more rele-
vant hypotheses, we allow the replication researchers
to evaluate replication hypotheses based on either the
introduction of the original paper (subsequently called
the "theory based method") or the results of the original
paper (subsequently called the "results based method").
This is not unique to our approach, other examples can
be found in Simonsohn (2015), who use the results of
the original study to determine the effect size to be eval-
uated in a replication study. Another example, although
not specific to the evaluation of replication studies, is re-
placing the null hypothesis with an interval hypothesis,
as is done in equivalence testing (Lakens et al., 2018).

In our methods we will evaluate other kinds of hy-
potheses than used in these articles. The theory based
method translates the introduction section from an orig-
inal paper into an informative hypothesis or hypothe-
ses (Hoijtink, 2012, e.g. Ht : µ3 < µ2 < µ1), whereas
the results based method uses the results section to
formulate interval hypotheses (Lakens et al., 2018;
Zondervan-Zwijnenburg et al., 2019, e.g. Hr : 5.28 <
µ1 < 5.94 & 4.90 < µ2 < 5.56). After data is col-
lected the BF is calculated to determine the relative

support in the data for the replication hypothesis (the
informative or interval hypothesis) versus its comple-
ment. This renders an innovative method that uses
informative hypotheses and the BF to evaluate repli-
cation studies. Our approach explicitly addresses the
fact that researchers do not always test the correct hy-
pothesis (Cho & Abe, 2013) and therefore is a remedy
against the "null-ritual", which was previously criticized
by Gigerenzer (2004). Our paper is also in line with
Dienes (2014) who discusses Bayesian interpretations
of non-significant results (however, not in the context
of replication studies). To address a similar issue, we
step away from using the null-hypothesis, instead we
use informative and interval hypotheses, and put this to
work in the context of replication studies.

This paper is structured as follows: our method is
illustrated using one of the replication studies from the
OSC (2012, 2015). This study will be introduced in
the next section. Following this introduction, we will
explain and demonstrate our methods, where an origi-
nal paper is translated to hypotheses, from start to fin-
ish. Subsequently, a second example employing more
than one hypothesis of interest will be presented. This
paper is concluded with a discussion in which we will
reflect on the possibility to synthesize information from
different studies, similar to methods three and four of
Anderson and Maxwell (2016).

The running example

The running example used in this paper is a study on
the perceptions of closeness toward one’s family mem-
bers and hometown (Williams & Bargh, 2008). In Study
4 of this paper, participants were instructed to mark off
two points on a Cartesian coordinate plan: these could
be close to the origin (Group 1 - Closeness), some dis-
tance from the origin (Group 2 - Intermediate), or far
from the origin (Group 3 - Distance). Participants then
rated the strength of their bonds to their siblings, their
parents, and their hometown. All questions were an-
swered on a scale ranging from 1 (not at all strong) to 7
(extremely strong) and averaged to create a total score.
The hypothesis was that marking points more distant
from the origin would result in perceiving the close-
ness toward one’s family members and hometown as
less strong. The results from this study are summarized
in Table 1, which contains more information and will be
referred to throughout this paper. Williams and Bargh
(2008) concluded that their expectations were matched
by their results. This can be seen from the p-value of
.01, which indicates that the three means are not equal,
and an ordering of the means as hypothesized.

Joy-Gaba et al. (2012) executed a direct replication
of the study by Williams and Bargh (2008). Their proce-
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dures were as similar as possible, using the same mate-
rials in the replication study as were used in the original
study. The results from the replication study, also pre-
sented in Table 1, show no significant differences be-
tween the groups. Using the procedure of vote counting
it can be concluded that the results were not success-
fully replicated: the p-value is not below the threshold
of .05.

What should be replicated

As elaborated in the introduction, our method to
evaluate replication studies determines the support in
the replication data for one ore more hypotheses re-
sulting from the original study. Two methods to obtain
these hypotheses will be presented in this section. In
the first, the hypotheses are extracted from the theoret-
ical framework as presented in an introduction of the
original paper. In the second, hypotheses are formu-
lated based on the information in the results section of
the original paper. An overview of the steps is given in
Table 2.

Method 1 - Theory based method

To construct hypotheses from the introduction of the
original study a six step procedure will be used that is
based on qualitative research methods (e.g. Charmaz,
2006; Glaser, 1978).

Step 1.1 - Reading the introduction

Read the introduction section of the original paper.
The introduction typically contains the theoretical back-
ground for the study, and results in the formulation of
theory-based hypotheses that will be tested in the study.
There is no output from this step.

Step 1.2 - Coding of statements in the introduction

Those statements are coded that specify theories or
expectations with respect to the outcomes of the study.
Coding is a qualitative (Boeije, 2010; Charmaz, 2006;
Glaser, 1978) manner of data analysis. Typically, cod-
ing consists of two activities: segmenting and labeling
(textual) data. For our purposes, the labelling part is
not that relevant, because the only goal is to localize
statements that can be labeled "theory or expectation
with respect to the outcomes of the study", that is, for
each statement selected the label is the same. The state-
ments of interest are often indicated with words such as
"hypothes*", "expect*", and "argue*" 1.

This step gives as output one or more statements. In
the running example two statements were coded:

1. "Accordingly, we argue that a primitive under-
standing of physical distance is the foundation for
the later-developed concept of psychological dis-
tance, given humans’ pervasive tendency to con-
ceptualize the mental world by analogy to the
physical world" (Williams & Bargh, 2008, p.2)

2. "We hypothesized that participants primed with
distance would report weaker attachments to their
family members and hometown, compared with
participants primed with closeness" (Williams &
Bargh, 2008, p.6)

Step 1.3 - Reading the methods and the results section

Read the results section of the original paper. This
section elaborates which analyses are to be executed.
No output results from this step.

Step 1.4 - Coding of statements in the methods and
the results section

Statements are coded that indicate what is actually
tested. In theory, this can be statements in the methods
section explaining which tests will be conducted to test
the hypotheses of interest. However, after checking 25
papers from the OSC Reproducibility Project: Psychol-
ogy to find examples of ways to present this informa-
tion in the methods section, we had to conclude that
this information is never, or barely ever, presented in
the methods section. Therefore only the results section
is used for the following steps, since here the relevant
information is always present. It remains necessary to
read the methods section, to understand how the vari-
ables used in a study are operationalized.

In the results section the outcomes of the tested hy-
potheses are presented. However, note that, these will
only be coded according to which hypothesis has been
evaluated with which test, not to clarify the results
of that test. The statements of interest may be indi-
cated with words such as: "we have tested (...)", "we
used/conducted (...) analysis/test (...)", and "to test the
hypothesis (...)". Also, sentences indicating particular
tests are of interest, e.g. t-test, ANOVA, and regression.
For the running example the following statements were
coded in the results section:

1. "Next, we conducted a planned contrast analysis
using weights of -1, 0, and 1 for a linear contrast,
and -1, +2, -1 for a quadratic contrast, for the
Closeness, Intermediate, and Distance conditions,
respectively. These contrast weights allowed us
to test the specific hypothesis that participants in

1*= different extensions are possible, e.g. hypothesis, hy-
pothesize, hypotheses
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Table 1

Descriptive statistics and results of the original study of Williams and Bargh (2008) and its replication by Joy-Gaba et al. (2012).

Original study by Williams Replication study by Joy-Gaba

& Bargh (2008) et al. (2012)

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

Closeness Intermediate Distance Closeness Intermediate Distance

M (SD) 5.61 (0.90) 5.23 (0.90) 4.86 (0.90) 5.44 (0.83) 5.31 (1.07) 5.31 (1.15)

95% CI (5.28, 5.94) (4.90, 5.56) (4.53, 5.19) (5.19, 5.69) (4.99, 5.63) (4.94, 5.68)

n 28 28 28 44 43 38

M1−2 (95% CI) 0.38 (-0.09, 0.85) 0.13 (-0.27, 0.53)

M2−3 (95% CI) 0.37 (-0.10, 0.84) 0.00 (-0.48, 0.48)

H0 : µ1 = µ2 = µ3 p = .01, η2 = .11 p = .79, η2 = .004

Hts
∗ : µ3 < µ2 < µ1 BFtsc = 2.10

Htmin1 : µ3 + 0.21 < µ2 + 0.10 < µ1 BFtmin1c = 0.57

Htmin2 : µ3 + 0.41 < µ2 + 0.19 < µ1 BFtmin2c = 0.11

HrM : 5.28 < µ1 < 5.94 & BFrM c = 1.92

4.90 < µ2 < 5.56 & 4.53 < µ3 < 5.19

HrD : −0.09 < µ1 − µ2 < 0.85 & BFrDc = 4.44

−0.10 < µ2 − µ3 < 0.84

Note that, Williams and Bargh (2008) do not present their three means, standard deviations and sample sizes. We were unable to retrieve the original data, therefore

numbers presented in the table were reconstructed using the information presented in the paper assuming equal within groups variances and assuming that the mean

of the second group was located on an equal distance of the other two means. This is very likely not in line with the original data, but allows us to illustrate our

approach using a real original study.

*= In the introduction section Williams and Bargh only explicitly discuss the groups Closeness and Distance, but in line with the theory underlying distance ques, we

assumed that the effect of "Intermediate" is between that of "Distance" and "Closeness".

the Distance condition enjoyed the excerpt more
than those in the Intermediate condition, who in
turn enjoyed it more than those in the Closeness
condition." (Williams & Bargh, 2008, p.4)

2. "An ANOVA revealed that the three spatial-
prime groups differed significantly in the reported
strength of their bonds to their family and home-
town, (...)" (Williams & Bargh, 2008, p.7)

This step results in one or more coded statements.

Step 1.5 - Selecting the statements from the introduc-
tion that are actually tested

The statements coded in Step 1.4 can be used to
verify which statements coded in Step 1.2 are actu-
ally tested. For the running example, as can be seen
from the second statement coded in Step 1.4, only the
second statement coded in Step 1.2 ("We hypothesized
that participants primed with distance would report
weaker attachments to their family members and home-
town, compared with participants primed with close-
ness") was tested. The result of Step 1.5 is a number
of statements.



6

Table 2

Overview and short explanation of the steps.
Theory based method Results based method
1.1 - Reading the introduction 2.1 - Reading the results section
Simply read through the section to know what is being studied Simply read through the section to know what is being studied
1.2 - Coding statements in the introduction 2.2 - Extracting the results
Indicate the prior expectations of the researchers Extract the results and indicate
1.3 - Reading the methods and the results section what the results of the conducted tests are
Simply read through the section to know what tests were conducted 2.3 - Translating results to interval hypotheses
1.4 - Coding of statements in the Calculate the desired interval hypotheses based on the results
methods and the results section
Select the statements that report the results of the tests
1.5 - Selecting the statements from the
introduction that are actually tested
Select the statements from Step 1.2 that are tested
with the statements selected in Step 1.4
1.6 - Translating statement to informative hypotheses
Formulate the tested statements from the
introduction section as testable hypotheses

Step 1.6 - Translating statements to informative hy-
potheses

In Step 1.6 informative hypotheses are formulated.
In the theory based method only ordered hypotheses
are formulated, of which two forms are distinguished:
simple ordering and minimal difference hypotheses on
(combinations of) parameters.

Informative hypotheses are a formal representation
of the expectations a researcher has with respect to
the relations between the means in an ANOVA (Hoi-
jtink, 2012, p. 50-51; Klugkist, 2005). Using inequality
constraints, order relations between (combinations of)
means (µ) can be specified. Three examples are:

H1 : µ1 < µ2 < µ3,

H2 : µ1 + 0.2 < µ2 & µ1 + 0.5 < µ3,

and

H3 : µ1A − µ1B > µ2A − µ2B.

H1 shows a specific ordering of three means, where the
mean of Group 1 is smaller than that of Group 2, which
in turn is smaller than that of Group 3. H2 is also an or-
dering of three means, but now the minimal difference
is specified. The mean of Group 1 is at least 0.2 points
lower than the mean of Group 2, and 0.5 points lower
than the mean of Group 3. H3 shows a two way analysis
of variance, with two factors with levels 1/2 and A/B.
Here, it is stated that the difference between the means
of Levels A and B is greater when located at Level 1,
than when located at Level 2. This is the start of a hy-
pothesis that specifies an interaction effect. To further

specify the interaction effect, elements like µ1A > µ1B

and µ1A > µ2A have to be added.
Next to inequality constraints, one could also use

equality constraints. Two examples are:

H4 : µ1A + µ1B = µ2A + µ2B,

and

H5 : µ1A + µ1B = µ2A + µ2B & µ1A + µ2A > µ1B + µ2B.

H4 indicates the absence of a main effect of the factor
with levels 1/2. No specification has been given in H4
regarding a main effect of the factor with levels A/B or
an interaction effect of those two factors. Next, H5 is an
extension of H4. Next to the specified absence of a main
effect of the factor with levels 1/2, a main effect of the
factor with levels A/B is specified here. H5 hypothesizes
that there is main effect, with the subjects located at
level A score on average higher than subjects located at
level B.

To formulate the informative hypothesis based on the
theory section of the paper, first the dependent vari-
able needs to be be determined. Second, it needs to
be determined which groups are distinguished and the
theory needs to be translated into inequality and or
equality restrictions on the group means. Applied to
the running example this renders: the variables in the
statement ("We hypothesized that participants primed
with distance would report weaker attachments to their
family members and hometown, compared with partic-
ipants primed with closeness"; Williams & Bargh, 2008,
p.6) are 1) attachment to family members and home-
town, and 2) the prime. The first variable, attachment,
is measured on a 7-point interval scale. For the prime
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variable three groups are distinguished in this study;
Distance, Intermediate and Closeness. The groups are
clearly ordered in this statement: a group primed with
more closeness scores is expected to score on average
higher on the dependent variable, strength of the at-
tachment, than the group primed with more distance.
Because there is no mention of the size of the difference,
an informative hypothesis with an inequality constraint
will be formulated:

Hts : µDistance < µIntermediate < µCloseness,

where, the subscript t denotes that the hypothesis is
based on the literature review in the introduction of
the paper, and the sub-subscript s indicates a simple or-
dering hypothesis is formulated. We would like to add
another variant of these types of hypotheses. Typically,
when discussing differences between two means, peo-
ple refer to a relevant difference. The hypothesis Hts

leaves room for irrelevant differences, e.g. the mean of
the Distance group is 0.01 lower than the mean of the
Closeness group. In the second hypothesis based on the
introduction section we assume at least a small effect,
that is a minimal difference of 0.2 standard deviation
(SD; Cohen, 1988). There are two ways to interpret
this: either 0.2 SD difference between adjacent groups
or between the groups with the most extreme means.
To show the effect of either decision, two hypothesis
are formulated:

Htmin1 : µDistance + 0.21 < µIntermediate + 0.10 < µCloseness

and

Htmin2 : µDistance + 0.41 < µIntermediate + 0.19 < µCloseness

where the sub-subscript min indicates that a minimal
difference hypothesis is formulated with at least Cohen’s
D equals 0.2 between adjacent groups. The score of
0.10 equals 0.1 times the pooled within group standard
deviation of groups Intermediate and Closeness in the
replication data. The score of 0.19 equals 0.2 times the
pooled within group standard deviation of groups In-
termediate and Closeness in the replication data. The
scores of 0.21 and 0.41 equal 0.1 and 0.2 times the
pooled within group standard deviation of groups Dis-
tance and Intermediate on top of the difference between
the groups Intermediate and Closeness: i.e. 0.21 is
based on 0.0956 (0.1 times pooled within group SD
for Intermediate and Closeness) + 0.1108 (0.1 times
pooled within group SD for Distance and Intermediate).
The result of this step is an informative hypothesis that
can later be evaluated using the data resulting from the
replication study. Before we continue with the analysis,
we will discuss the results based method.

Method 2 - Results based method

To construct hypotheses based on the outcomes of the
original study a three step procedure will be used.

Step 2.1 - Reading the results section

Read the results section of the original paper, which
reports the outcomes of the conducted analyses. It
might also be useful to read the methods section to get
a general idea of how the study was executed. There is
no output from this step.

Step 2.2 - Extracting the results

Extract the results from the original paper. The rele-
vant results for this method are the mean and its stan-
dard error for each group. If the standard error is not
reported it can be computed using the standard devi-
ation and sample size for each of the groups. Those
statistics are often included in a table with descriptive
statistics in the results section. In the running example
not all the needed statistics were reported. The avail-
able statements that were used to determine the results
reported in Table 1 are:

1. "An ANOVA revealed that the three spatial-
prime groups differed significantly in the reported
strength of their bonds to their family and home-
town, F(2, 81) = 4.97, prep = .95, η2 = .11." Note
that, this corresponds to the p-value of .01 as re-
ported in Table 1.

2. "(...) the linear contrast showed that participants
primed with distance reported weaker bonds to
their family and hometown (M = 4.86), com-
pared with participants primed with closeness (M
= 5.61), t(81) = -2.86, prep = .96." Note that, this
corresponds to the p-value of .01 as reported in
Table 1.

Step 2.3 - Translating results to interval hypotheses

With interval hypotheses it can be tested whether one
or more means are within our outside of a certain in-
terval of values (Zondervan-Zwijnenburg et al., 2019).
Examples of interval hypotheses are:

H6 = 0.2 < µ1 < 0.4,

H7 = −0.1 < µ1 < 0.7 & 1.1 < µ2 < 2.4,

and

H8 = −0.6 < µ1 − µ2 < 0.1 & 0.7 < µ2 − µ3 < 1.2.
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In H6 it is stated that the mean of Group 1 is within the
range 0.2 to 0.4. Whereas H7 states that the mean of
Group 1 is somewhere in the range -0.1 through 0.7,
and the mean of Group 2 is in the interval 1.1 to 2.4.
Lastly, H8 states that the difference between the means
of Groups 1 and 2 is somewhere in the range of -0.6 (µ2
is considerably larger) to 0.1 (µ1 is slightly larger), and
the difference between the means of Groups 2 and 3 is
in the range of 0.7 to 1.2 (µ2 is larger). The end points
of the interval should be chosen such that they represent
the uncertainty in the estimates of the means obtained
from the original study. As can be seen in Equations 1
and 2 the lower bound (LB) of the interval is the lower
bound of the traditional 95% confidence interval for the
mean or the difference between two means, and the up-
per bound (UB), Equations 3 and 4, is chosen analo-
gously:

LBmean = M − 1.96 ∗
S D
√

n
(1)

LBdi f f erence = M1 − M2 − 1.96 ∗

√
S D2

1

n1
+

S D2
2

n2
(2)

UBmean = M + 1.96 ∗
S D
√

n
(3)

UBdi f f erence = M1 − M2 + 1.96 ∗

√
S D2

1

n1
+

S D2
2

n2
, (4)

where all statistics are derived from the original study.
Due to publication bias (Rosenthal, 1979) M1 −M2 is

possibly an overestimation of the true effect. If this is
indeed the case, M1 − M2 obtained from the replication
data will probably be (much) smaller and not contained
in the intervals specified in the hypotheses. Therefore,
the support in the replication data for the replication
hypotheses will be small, which is, in this case, the de-
sired result. If the interval in the replication hypothesis
becomes very narrow, this would be the case when the
sample size in the original study was large, two things
can happen. Either the result from the replication study
falls within the interval, which would lead to strong sup-
port for the replication hypothesis as is desired. Or, if
bias was present in the original study, the results from
the replication study falls outside of the interval which
would lead to a strong rejection of the replication hy-
pothesis, which is also desired.

To formulate an interval hypothesis, a similar proce-
dure should be followed as for the theory based method.
Start with determining the dependent variable. Then,
determine which groups are distinguished. Finally, the
confidence interval for each group can be determined.
In the running example, three means were reported. For

each of those means an interval has to be specified. Us-
ing the descriptive statistics presented in Table 1 and
Equations 1 and 3 results in:

HrM : 5.28 < µCloseness < 5.94 & 4.90 < µIntermediate <
5.56 & 4.53 < µDistance < 5.19,

where the subscript r indicates the hypothesis is formu-
lated based on the results, and the sub-subscript M in-
dicates it is an interval hypothesis based on the means.
There is another possibility however. Instead of focus-
ing on the means, one could also focus on the difference
between means. Often, researchers are not necessarily
interested in the means themselves, but rather on the re-
spective position of one mean related to another. There-
fore, interval hypotheses could also be formulated such
that they specify in what region the difference between
two means fall. For this study it results in the following
hypothesis:

HrD : −0.09 < µCloseness − µIntermediate < 0.85 & − 0.10 <
µIntermediate − µDistance < 0.84,

where the sub-subscript D indicates the interval hypoth-
esis is based on the difference between the means. In
hypothesis HrD it is specified that the difference between
the means of the groups Closeness and Intermediate
should be between -0.09 (mean of the Intermediate
group is somewhat higher) and 0.85 (mean of Close-
ness is considerably higher), and the difference between
the means of the groups Intermediate and Distance is in
the range of -0.10 to 0.84. This interval is based on
the 95%-CI calculated around the difference of these
means in the original study. Furthermore, the difference
between the means of the Intermediate and Distance
group is also specified in hypothesis HrD .

At this point, the replication hypotheses are formu-
lated in the form of informative hypotheses in the the-
ory based method or in the form of interval hypotheses
in the results based method. In the following section we
discuss how these hypotheses can be evaluated.

An important property of the original study

An important note needs to be made. When using the
original paper to formulate hypotheses, the sample size
of that original study is of high influence on usefulness
of the replication (Anderson & Maxwell, 2016; Ander-
son et al., 2017). Note that this only influences the po-
tential usefulness of replications conducting according
to the results based method. These problems are not
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present in the theory based method, as we will discuss
below. We specify two situations that both seem prob-
lematic: a large and a small sample size in the original
study. This phenomenon is touched upon in the pre-
vious subsection (and is also explored in Simonsohn,
2015), but will be discussed more elaborate here.

First, a large sample size might seem problematic.
A large sample size leads to small intervals, that is,
rather precise estimates. Two situations can arise. Ei-
ther the estimate is correct or there was bias in the orig-
inal study. While this may seem problematic, it actu-
ally is not. In case the estimate is unbiased, the repli-
cated (difference) in means will be close to the original
(difference) in means leading to strong support for the
replication hypothesis. However, if bias was present in
the original study, the (difference in) means in the repli-
cation study will be rather different from the difference
specified in the replication hypothesis. This will lead
to a rather strong rejection of the replication hypothe-
sis. Both situations give the desired result: either strong
support for the replication hypothesis in the absence of
bias, or strong support against the replication hypothe-
sis in the presence of bias. Concluding: a large sample
size, and bias, are no problem.

Second, a small sample seems problematic. A small
sample size leads to relatively big intervals. The bigger
an interval, the higher the chances are that the repli-
cation hypothesis receives support. One should won-
der if it is useful to conduct the replication study when
the replication hypothesis is vague and non informa-
tive. The result based method should not be used for
original studies with too small sample sizes. A critical
assessment of the replication hypothesis is needed: do
you think it is realistic to reject the replication hypoth-
esis based on the results? If this is not the case, dif-
ferent kinds of hypotheses could be formulated. For
instance, the informative hypothesis from the theory
based method could be used, even based on the results.
That is, the ordering could be specified based on the
ordering in the results of the original study. Note that
for the theory based method the small sample issue does
not arise, since the hypotheses are formulated without
involving the sample sizes or reported means and stan-
dard deviations from the original study.

To summarize, the theory based method could be
used regardless of the properties of the original study.
The result based method can be used when the origi-
nal study has a large sample size, regardless of possible
bias. In the case of a small sample in the original study,
it is better to avoid the result based method and to use
the theory based method. The flexibility in formulat-
ing hypotheses ensures that a proper evaluation of the
corroboration of the results should be possible.

Conducting the replication study

After determining the hypotheses that will be tested,
the replication study can be executed. This includes
the set-up of the study, obtaining the participants, and
collecting the data. The methodological set-up of the
replication study is not within the scope of this paper.
For the decisions to be made for the set-up, we refer to
articles such as Brandt et al. (2014), Hüffmeier et al.
(2016), and Wilson (2016). The three relevant issues
to be discussed here are the competing hypothesis, the
interpretation of the Bayes factor (BF), and Bayesian
updating.

The competing hypothesis

The goal of the replication study is to use new data
to determine the relative support for the replication
hypothesis versus its complement: "not the replica-
tion hypothesis". This enables answering the question
"Are the results of the original study replicated or not".
The complement of an informative hypothesis specify-
ing two group means is easy to understand: the com-
plement of µ1 < µ2 is simply put µ1 ≥ µ2. For hy-
potheses with more groups and interval hypotheses it
is harder to capture the complement. Therefore, the
notation "not Ht" is used. For instance, in the the-
ory based method the replication hypothesis specified
that the mean of the Distance-group was smaller than
the mean of the Intermediate-group which in its turn
is smaller than the mean of the Closeness-group (Hts :
µDistance < µIntermediate < µCloseness). The competing hy-
pothesis contains every situation where this is not the
case (e.g. µIntermediate < µDistance < µCloseness, but also
µCloseness < µIntermediate < µDistance and more), Hc: "not Hts ".
Also for the other hypotheses in the running example Hc

equals "not the replication hypothesis".

Comparing the replication hypothesis with its com-
plement

The BF will be used to determine the relative sup-
port in the data for the replication hypothesis versus its
complement. See for a general introduction of the BF
Kass and Raftery (1995), and for a tutorial focused on
hypotheses evaluation Hoijtink, Mulder, et al. (2019).
Here, the Bayes factor as implemented in the R pack-
age bain will be used (for the statistical background
the interested reader is referred to Gu et al., 2018; Hoi-
jtink, Gu, et al., 2019b; and Hoijtink, Mulder, et al.,
2019). We now provide a rather accessible account of
this BF. For a more thorough explanation and elabora-
tion of how bain calculates the BF, the interested reader
is referred to . This BF is calculated by evaluating the fit
and the complexity of each hypothesis:



10

BFtsc =
ft
ct
×

1 − ct

1 − ft
, (5)

where ft denotes the fit of Ht, ct denotes the complex-
ity of Ht and 1− ft and 1−ct denote the fit and complexity
of the complement, respectively. When informative and
interval hypotheses are evaluated both the fit and the
complexity are probabilities. A really badly fitting hy-
pothesis has a fit close to zero, and a very good fitting
hypothesis has a fit close to one. A very specific hypoth-
esis has a complexity close to zero, and a hypotheses
that is not very specific has a complexity close to one.
Note that, BFrc is obtained if the subscripts t in Equation
5 are replaced by r.

The BF is a measure of the relative support in the
data for Hr and Hc. If, for example, BFrc = 9, there is
9 times more support in the data for Hr than for Hc. If
BFrc = 0.2 there is 5 times more support for Hc than
for Hr. As can be seen in Equation 5 support is quan-
tified using fit (which should be good) and complexity
(which should be small because more specific hypothe-
ses allow for better predictions). The statistical elabo-
ration of fit and complexity can be found in Gu et al.
(2018) and Hoijtink, Mulder, et al. (2019). Here only
two short and intuitive illustrations will be given. The
fit of Hts : µ1 > µ2 > µ3 is good if M1 = 6,M2 = 3,M3 = 1
because the sample means are in agreement with the
order restrictions specified by the hypothesis, and bad
if M1 = 5,M2 = 6,M3 = 9. The complexity of Hts :
µ1 > µ2 > µ3 equals 1/6 because one of six possible
ordering of three means is specified. The complexity of
Ht′s : µ1 > (µ2, µ3) equals 2/6 because two orderings are
specified (µ1 > µ2 > µ3 and µ1 > µ3 > µ2). Thus, Hts

is more specific than Ht′s and therefore it has a smaller
complexity.

To compute the complexity a parameter called "frac-
tion" has to be set. This parameter determines the
weight of the complexity in the computation of the
Bayes factor. The Bayes factor for the evaluation of an
informative hypothesis specified using only inequality
constraints versus its complement is independent of the
choice of this fraction (Hoijtink, Mulder, et al., 2019;
Mulder, 2014). However, this is not the case for inter-
val hypotheses or informative hypotheses specified us-
ing at least one equality constraint. The default setting
in bain (fraction = 1) is chosen such that the Bayes
factor tends to prefer the interval hypothesis or an in-
formative hypothesis using at least one equality con-
straint over its complement unless there is substantial
evidence in the data against the interval or informative
hypothesis. There is a good reason to prefer the interval
hypothesis or informative hypothesis specified with at
least one equality constraint (since these state that there

is no relevant effect) over its complement (which states
that there is a relevant effect). "In an era of height-
ened awareness of publication bias, sloppy science, and
irreplicability of research results, researchers should be
conservative, that is, convincing evidence is needed be-
fore the alternative hypothesis [there is a (relevant) ef-
fect] is preferred over H0 [or there is no relevant effect]"
(Hoijtink, Mulder, et al., 2019, p. 30). However, when
the interval hypothesis or the informative hypothesis
represents the results of an original study, the reason-
ing should be the other way around, that is, convincing
evidence is needed before the interval or informative
hypothesis is accepted over its complement, that is, the
Bayes factor should prefer the complement unless there
is substantial evidence in the data in favor of the inter-
val or informative hypothesis. This can be achieved in
bain using fraction = 3. The interested reader is also
referred to the section Sensitivity Analysis in Hoijtink,
Mulder, et al. (2019) where this topic is further elabo-
rated.

Note that, the BF does not lead to a dichotomous de-
cision in favor or against the replication hypothesis, it
is a measure of support. If BFrc = 82, it is clear that
the replication hypothesis is preferred by the data, if
BFrc = 9, there still is substantial support for the repli-
cation hypothesis; if BFrc = 3.5, there is some support
for the replication hypothesis but its complement can
not be disqualified; and, if BFrc = 1.4, the replication
data provide about equal support for both hypotheses.
For a proper interpretation of the BF, general purpose
cut-off values are unnecessary and, in fact, should be
avoided (see, for example, the discussion of cut-off val-
ues in Hoijtink, Mulder, et al., 2019).

Assuming that a priori each of the hypotheses is
equally likely, as is usually done, the BF can be trans-
lated into so-called posterior model probabilities (PMP)
which quantify the certainty of our preference for one
of the hypotheses being tested. For example, if BFrc

= 4, PMPr = 4/(1 + 4) = .80 and PMPc = 1/(1+4) =
.20, which implies that a preference for Hr comes with
a Bayesian error probability of .20. If, for example, BFrc

= 11, PMPr = 11/(1+11) = .92 and PMPc = .08. This
implies that in this situation a preference for Hr comes
with a Bayesian error probability of .08. The interested
reader is referred to Hoijtink, Mulder, et al. (2019) for
further elaboration. Note that, in the sequel we will use
both BFs and PMPs to quantify the support in the data
for the hypotheses entertained.

Determining the desired support

How much support we aim for if the replication hy-
pothesis or its complement is true needs to be deter-
mined in advance. Sufficient support need not be es-
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pecially strong (e.g.: BFrc = 4, or BFrc = 6) if the re-
searcher is testing an idea or hypothesis new to their
research field and simply wants to know whether it is
worthwhile to pursue this theory. However, when es-
tablished theories are retested and the researcher is thus
very certain about the hypothesis of interest, more sup-
port would be required (e.g.: BFrc = 9, or BFrc = 11).
Each researcher has to decide for the situation at hand
how much support is required. In line with the last
lines of the previous section, to avoid the introduction
of new cut-off values, general purpose guidelines will
not be provided. Please note that the desired support is
also needed in the next subsection where we will intro-
duce Bayesian updating. Note furthermore, that the use
of support should not lead to dichotomous decisions.
What it should lead to is a preference for one of the hy-
potheses involved, where the strength of this preference
is quantified using the BF and PMPs. E.g. if BFrc = 6,
there is a preference for Hr, PMPr = .86, but Hc can not
yet be ignored, since a preference for Hr comes with a
Bayesian error probability of (1− .86) = .14. If BFrc = 9,
there is a stronger preference for Hr, but still Hc can not
completely be ignored: a preference for Hr comes with
a Bayesian error probability of .10.

For the running example, different decisions could
be made per hypothesis. For the theory based method
(Hts : µDistance < µIntermediate < µCloseness and both Htmin1

and Htmin2), a support of BFtc = 3 or BFct = 3 could suf-
fice. From the introduction of Williams & Bargh (2008)
it can be seen that they pursue the evaluation of a new
theory, therefore one could see this as a first exploration
where some support would already be satisfactory. The
hypotheses from the results based method (HrM : 5.28 <
µCloseness < 5.94 & 4.90 < µIntermediate < 5.56 & 4.53 <
µDistance < 5.19 and HrD : −0.09 < µCloseness − µIntermediate <
0.85 & − 0.10 < µIntermediate − µDistance < 0.84) should re-
ceive a substantial amount of support. The data in the
original study was very convincing with respect to this
hypothesis, therefore it would be reasonable to aim for
a BF of 10 in favor of either this replication hypothesis
or its complement. Note that, the BF values chosen in
this paragraph are, in the role of replication researchers,
our choices. Other replication researchers may very well
come up with different values.

An important property of the replication study

In classical statistics power analyses are often con-
ducted (Cohen, 1988; Erdfelder et al., 1996). Power
analysis provides the needed sample size to reach mean-
ingful conclusions for hypotheses formulated in stan-
dard forms. For Bayesian statistics there is a very good
alternative: Bayesian updating (Hoijtink, Mulder, et al.,
2019; Rouder, 2014). Bayesian updating is conducted

by sampling additional data until the minimum amount
of support in favor of the replication hypothesis or its
complement is obtained or the available resources (time
and money) to collect additional data have been ex-
hausted. Of course, replication studies should be ad-
equately powered, see for example Morey and Lakens
(n.d.) and Simonsohn (2015). Therefore, it is recom-
mended to execute some form of Bayesian design anal-
ysis in order to determine whether the resources avail-
able are sufficient to obtain a "well-powered" replica-
tion study. Bayesian design analysis is under develop-
ment, the interested reader is referred to Fu (2022) and
Schönbrodt and Wagenmakers (2018) for the current
state of the art.

Practically updating can be executed by starting with
a reasonable sample size, e.g. n = 20 per group. After
the first round of data collection the BF is determined.
If this BF meets the desired support, see the previous
subsection, data collection is finished and the research
process moves on. If the BF does not meet the desired
support for either hypothesis, more data is collected. Af-
ter each round of data collection (with for instance n =
20 per group) the BF is determined. Once it reaches
the desired amount of support for either hypothesis the
data collection stops. Please note that when the desired
BF is relatively small, e.g. BFrc = 4 (which corresponds
to PMPs of .80 and .20 for Hr and Hc, respectively), the
probability that the best hypothesis is incorrectly pre-
ferred is still relatively large. On the other hand, if the
desired BF is relatively large, e.g. BFrc = 11, the proba-
bility of an incorrect preference is relatively small, that
is, if Hr is preferred the error probability, that is, the
PMP associated with Hc, equals .08. Updating cannot
be illustrated here, since this paper is based on exist-
ing original and replication studies and therefore the
sample sizes are fixed. However, we will provide one
example where updating is applied using additional hy-
pothetical data and mention for the other hypotheses
what decision would be made with regards to updating.

Evaluating the replication hypothesis using the repli-
cation data

To calculate BFtc or BFrc the R package bain
(Hoijtink, Mulder, et al., 2019; https://informative-
hypotheses.sites.uu.nl/software/bain/) is used. The
codes and data used for the analyses presented in this
paper can be found on the OSF page for this study:
https://osf.io/up3rv/.

Theory based method, Hts

For Hts : µDistance < µIntermediate < µCloseness, the desired
support was BF = 3 for either hypothesis. In the repli-
cation sample there were 44 and 38 participants in the

https://informative-hypotheses.sites.uu.nl/software/bain/
https://informative-hypotheses.sites.uu.nl/software/bain/
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groups. The data eventually provided minimal support
for the replication hypothesis, BFtsc = 2.10, but support
does not reach the desired level. The difference be-
tween the means of the Distance group (M = 5.31, SD =
1.15), the Intermediate group (M = 5.31, SD = 1.07),
and the mean of the Closeness group (M = 5.44, SD
= 0.83) is not large enough (Cohen’s d = 0.13 between
both Distance and Closeness, and between Intermediate
and Closeness), nor is the ordering convincingly out of
order, to render the required evidence in favor of either
the replication hypothesis or its complement.

Therefore, Bayesian updating (Rouder, 2014) can be
applied here to obtain stronger support for either the
replication hypothesis or its complement. Since we are
not able to collect more data ourselves, we duplicate
the dataset of the replication study. This is not a recom-
mended procedure! It is used here only to demonstrate
how updating works. We will assume that we have col-
lected additional data with coincidentally the same sam-
ple means, standard deviations, and sample size as the
first half. The BFtsc is calculated for the updated dataset.
Now, the result is BFtsc = 2.66 (versus the previous BFtsc

= 2.10). The extended dataset gives almost 3 times
more support for the replication hypothesis than for the
complement. Since the desired amount of support is
still not achieved, it is reasonable to continue collecting
data until the threshold of BF = 3 is achieved in favor
of the replication hypothesis or its complement. Note
again that in a real situation the researcher would need
to actually collect more data for Bayesian updating, which
we did not do.

After adding more data, in this case triplicating the
original data, BFtsc is calculated again. Now, the result
is BFtsc = 3.10 (versus the previous BFtsc = 2.66). The
extended dataset gives more than three times as much
support for the replication hypothesis over the comple-
ment. Now, the desired amount of support is achieved,
we have a preference for Hts , however this preference
comes with an error probability equal to PMPc = .24.

Theory based method, Htmin1
and tmin2

For the minimal difference hypothesis two hypothe-
ses were formulated: Htmin1 (µDistance+0.41 < µIntermediate+

0.19 < µCloseness) and Htmin2 (µDistance + 0.21 < µIntermediate +

0.10 < µCloseness). Both hypotheses were formulated to
show the impact of interpreting the minimal difference
of 0.2 SD, either between adjacent groups or between
the most extreme group means. A desired support of BF
= 3 was set for this hypothesis. With approximately n
= 40 per group we can see that the actual difference is
not in agreement with the hypothesis. The mean of the
Closeness group is 0.13 higher than both the mean of
the Distance and the mean of the Intermediate group.

Only the difference between the means of the Interme-
diate and the Distance group are according to the situa-
tion describe in Htmin1 . All other means are not in accor-
dance with either hypothesis. The resulting BFs were:
BFtmin1c = 0.57 and BFtmin2c = 0.11. There is no convinc-
ing support to prefer Htmin1 or its complement: PMPtmin1 =
.36 and PMPc = 0.64, however, updating could be used
to reach the desired level of support. There is clear sup-
port for Hc over Htmin , BFtminc = .11, that is, BFctmin = 9.10
with PMPtmin = .10 and PMPc = .90.

Results based method, HrM

For the second method we consider the hypothesis
HrM (HrM : 5.28 < µCloseness < 5.94 & 4.90 < µIntermediate <
5.56 & 4.53 < µDistance < 5.19). A desired support of
BF = 10 was set for this hypothesis. The intervals ap-
pear small enough to formulate meaningful conclusions.
Some overlap between adjacent means is present, but
the extremes do not overlap. Furthermore, the interval
cover around 10% of the scale, which leaves enough
room for scores outside the intervals. We can continue
with the results based method. With approximately n
= 40 per group, two out of three means (MCloseness =

5.44, SD = 0.83 & MIntermediate = 5.31, SD = 1.15) from the
replication study fall within their respective confidence
intervals from the hypothesis. The mean of the Distance
group (M = 5.31, SD = 1.07) does not fall within its
hypothesized confidence interval. This results in some
support for the replication hypothesis, BFrMc = 1.92.
There is some reason to further explore HrM , though
there is no convincing support according to the stan-
dards set by us to prefer the presented hypothesis or
its complement, the Bayesian error probability associ-
ated with a preference for HrM is PMPc = .34. Updating
could, in principle, be used to obtain stronger evidence
for either hypothesis.

Results based method, HrD

Lastly the interval hypothesis specifying the differ-
ence between the means (HrD : −0.09 < µCloseness −

µIntermediate < 0.85 & −0.10 < µIntermediate−µDistance < 0.84)
is considered. For this hypothesis a desired support of
BF = 10 was set. The difference scores are measured on
a scale from -6 to 6. This means that the intervals cover
about 10% of the scale, which leaves enough room for
scores outside the intervals. We can continue with the
results based method. Both intervals include the actual
difference between the groups means found in the repli-
cation study, this results in BFrDc = 4.44. There is sup-
port although not convincing enough for our goals to
prefer either the replication hypothesis nor its comple-
ment. To achieve this level of support, updating could
be used.
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Conclusion

In reality, researchers would evaluate one replication
hypothesis. That we evaluated four hypotheses was
only to show the versatility of our approach. But it
may be clear that most BFs show no clear preference
for either hypothesis. The only BF that gives a clear an-
swer shows strong support for the complement. All in
all, we conclude that the results of Williams and Bargh
(2008) are not convincingly corroborated by Joy-Gaba
et al. (2012).

Example 2 - Janssen, Schirm, Mahon, and
Caramazza

For the second example, the original article of
Janssen et al. (2008) and the replication of Study 1
in this paper by Galak (2012) will be used. The deci-
sion was made to conduct the replication using the sim-
ple ordering hypothesis from the theory based method,
because the goal of this replication is to test the gen-
eral conflicting theories presented in the introduction
of Janssen et al. (2008). This second example will il-
lustrate a situation where competing theories are tested
against each other, as well as a hypothesis specified us-
ing an equality constraint and an inequality constraint.

Step 1 - Reading the introduction section

Reading the introduction section

The goal of the study is to test whether the seman-
tic interference effect arises in a delayed naming task.
Participants were shown 20 pictures of common ob-
jects, half with low frequency names (used 1 to 9 times
per million words) and half with high frequency names
(used 72 to 724 times per million). In each trial, one
of the 20 pictures (e.g., car) was shown on the screen.
After 1000 ms, a distractor word was shown beneath
the picture. The distractor could be either related (e.g.,
truck) or unrelated (e.g., table). Participants were in-
structed to name the picture as soon as the distractor
word appeared on the screen. The semantic interfer-
ence effect claims that a related distractor word makes
it easier to find the correct word, so the response time
is shorter when the distractor word is related. Since
the participant sees the picture for some time, it is ex-
pected that the frequency (1-9 times or 72-724 times
per million) has no effect on the time to give the proper
response. If the semantic interference effect arises at
a post-lexical level of processing, that is, after thinking
about what to say, the distractor word would influence
reaction time. The researchers wanted to investigate
whether this effect appears in such a delayed naming
task.

Step 2 - Coding of statements in the introduction sec-
tion

From the introduction section a number of state-
ments were coded that related to the hypotheses of in-
terest to the researchers of the original paper:

• "The primary source of empirical evidence cited in
support of lexical selection by competition is the
semantic interference effect (...): Naming a pic-
ture of an object (e.g., CAR) is slower in the con-
text of a semantic category coordinate distractor
word (e.g., truck) compared to an unrelated dis-
tractor word (e.g., table)." (Janssen et al., 2008,
p.2)

• "If the semantic interference effect arises at the
level of lexical selection, then the semantic in-
terference effect will not be observed when par-
ticipants delay their picture naming responses."
(Janssen et al., 2008, p.3)

• "However, if the semantic interference effect arises
at a postlexical level of processing, then semantic
interference should be observed in a delayed nam-
ing task." (Janssen et al., 2008, p.3)

• "If participants have already retrieved the lexical
representations corresponding to the target pic-
ture names in the delayed naming condition at the
time the cue is presented, then there should be no
effect of the frequency of the target pictures on
naming latencies." (Janssen et al., 2008, p.4)

Step 3 - Reading the methods & results section

The methods section makes clear that a 2 (Fre-
quency: high; HF, vs low; LF) x 2 (Relatedness: re-
lated; rel, vs unrelated; unrel) ANOVA design was used.
The dependent variable was the time the participants
needed to name the object.

Step 4 - Coding of statements in the methods & re-
sults section

From the results section, the three statements with
respect to hypothesis testing were coded. Note that the
interest is on what is being tested, not on the results of
the test:

• "The R[esponse] T[ime] analysis revealed a main
effect of semantic relatedness, (...) ; F2(1, 38) =
4.4,MS E = 1, 137.2, p < .05, indicating slower RTs
in the semantically related than the unrelated con-
dition." (Janssen et al., 2008, p.6)
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• Neither the main effect of frequency nor (...)
reached significance (all Fs < 1). (Janssen et al.,
2008, p.6)

• Neither (...) nor the interaction between fre-
quency and semantic relatedness reached signif-
icance (all Fs < 1). (Janssen et al., 2008, p.6)

Step 5 - Selecting the statements from the introduc-
tion section that are actually tested

Based on the statements from the results section, it
appeared that the first statement was not tested, it was
merely a description of the effect under investigation in
statements two and three. However, Statements 2 and
3 were tested.

Step 6 - Translating statements to informative hy-
potheses

Statements remaining from Step 5 will now be trans-
lated into simple ordering hypotheses:

• "If the semantic interference effect arises at the
level of lexical selection, then the semantic inter-
ference effect will not be observed when partici-
pants delay their picture naming responses." can
be represented as:
µ1A + µ2A = µ1B + µ2B

• "However, if the semantic interference effect arises
at a postlexical level of processing, then semantic
interference should be observed in a delayed nam-
ing task." can be represented as:
µ1A + µ2A > µ1B + µ2B

• "If participants have already retrieved the lexical
representations corresponding to the target pic-
ture names in the delayed naming condition at the
time the cue is presented, then there should be no
effect of the frequency of the target pictures on
naming latencies." can be represented as:
µ1A + µ1B = µ2A + µ2B

The first two statements describe the same main ef-
fect, but with different outcomes. One suggests that
there is a main effect: the reaction time is lower with
unrelated distractors than with related distractors, the
other describes the absence of this effect: both groups
score equally on average. The third statement describes
the other main effect, that of frequency. This results in
the following replication hypotheses:

Ht1 : µ1A + µ2A = µ1B + µ2B & µ1A + µ1B = µ2A + µ2B,

Ht2 : µ1A + µ2A > µ1B + µ2B & µ1A + µ1B = µ2A + µ2B,

using the replication data, each can be tested against
its complement, and, additionally, both can be tested
against each other.

Determining the desired support

From the literature it is apparent that there is a clear
and established theory regarding the effect of frequency
on the reaction time. For the relatedness of distractors,
there are contradicting ideas and theories. For this rea-
son, the desired support is set to 5 for both of the repli-
cation hypotheses versus their respective complements.
However, the replication hypotheses can also be tested
against each other, and to gather some idea on which
hypothesis needs further exploration, here a minimum
BF of 5 is also chosen.

Calculate BF for the replication data

Three BFs are calculated: each replication hypothe-
ses versus its complement and the replication hypothe-
ses versus each other. Note that, for the same reason
highlighted for interval hypotheses, here too bain was
used with fraction = 3 for all analyses. The statistics
for both the original and the replication study are dis-
played in Table 3.

• Ht1 : µ1A + µ2A = µ1B + µ2B & µ1A + µ1B = µ2A + µ2B

versus its complement. The result of the analysis,
BFt1c = 4.57, indicates a slight preference for the
first replication hypothesis, the error probability
associated with a preference for Ht1 equals PMPc

= .18. This is corroborated by the η2’s for both
main effects that can be found in Table 5, it is .02
for the first part of Ht1 and .03 for the second part,
that is, both are rather small.

• Ht2 : µ1A + µ2A > µ1B + µ2B & µ1A + µ1B = µ2A + µ2B

versus its complement. The result of this analy-
sis, BFt2c = 2.24, lends hardly any support for the
replication hypothesis versus its complement, the
error probability associated with a preference for
Ht2 equals PMPc = .31.

• Ht1 versus Ht2 . When the two replication hypothe-
ses are tested versus each other, the support for
the first is hardly larger than for the second, BFt1t2
= 2.04, the error probability associated with a
preference for Ht1 equals PMPt2 = .33.
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Conclusion

We chose 5 as the desired support for both replication
hypotheses versus their respective complements and
versus each other. Ht1 (µ1A+µ2A = µ1B+µ2B & µ1A+µ1B =

µ2A+µ2B) received more than 4 times as much support as
its complement. Ht1 receives about double the support
as Ht2 (µ1A+µ2A > µ1B+µ2B & µ1A+µ1B = µ2A+µ2B). Both
of these BFs do not meet the desired support. There is
some indication that the original results of Janssen et al.
(2008) formulated in terms of Ht1 were corroborated by
Galak (2012). However, since the sample sizes of the
replication study were relatively small (20 persons per
group), and the desired support for either hypothesis
was not achieved, it is relevant to consider collecting ad-
ditional data for the replication study and, subsequently,
to update the Bayes factors.

Discussion

Inspired by the Reproducibility Project: Psychology
(OSC, 2012; 2015) two refined methods were offered
to plan and evaluate replication studies. In the the-
ory based method the replication hypothesis was formu-
lated based on the introduction of the original paper.
This method would be executed when a theory elabo-
rated in the introduction of the original study is evalu-
ated using a replication study. Two kinds of informative
hypotheses can be formulated here, a simple ordering
hypothesis or a minimal difference hypothesis. In the
results based method, the results of the original study
are used to formulate the replication hypothesis. Here,
an interval hypothesis around the means or around the
difference between means is formulated.

We believe both methods enable replication stud-
ies that meet the needs and desires of replicating re-
searchers. They can determine how much the results of
a replication study favor or contradict the original, us-
ing the BF. Where necessary, Bayesian updating allows
for the collection of data until the desired degree of cer-
tainty is obtained. Our methods allow to formulate mul-
tiple concurrent hypotheses as was illustrated in Exam-
ple 2, and provide flexibility in formulating the replica-
tion hypothesis. Our approach is a remedy against the
"null-ritual" (Gigerenzer, 2004) and explicitly addresses
the importance of testing the correct hypothesis (which
is not always done, Cho & Abe, 2013).

For the evaluation of both methods some subjective
decisions had to be made. For both methods the desired
support has been set to BF = 3 or 10. For the theory
based method one has to decide whether the minimal
difference applies to each pair of group or to the ex-
treme groups. For the results based method fraction
= 3 has been chosen. For the results based method we

used 95%-intervals, 90% or 99% intervals could also
have been used. For the results based method one has
to decide whether to focus on means or a difference be-
tween means. Within this article no investigation on
the impact of the choices has been executed. The focus
in this paper is on the hypotheses one formulates. It
is essential to test the correct hypothesis, and the main
message from this study is how to formulate that hy-
pothesis. Therein still lies a subjective decision, repli-
cating researchers should critically assess when a result
corroborates the original study. In some instances the
difference between adjacent means is important, some-
times a focus on the difference between the smallest and
the largest means is most relevant (for the theory based
method). And whereas in some circumstances hypothe-
ses should be based on the means, in other one prefers
the difference between means. Researchers should criti-
cally assess which situation applies to their situation be-
fore conducting the replication study. A sensitivity anal-
ysis could be helpful to understand the effect of these
types of decisions. The remainder of the paper explains
the further steps necessary to analyse the replication hy-
pothesis. During that process, for each of the subjective
decisions the mainstream options were followed.

A major strength of these methods is the possibility
of updating (Rouder, 2014). Updating makes sure that
studies end with convincing results. No estimates, as-
sumptions, or guesses are necessary, unlike for power
analyses. The replicating researchers only need to de-
termine what the stopping point is, i.e. what the desired
amount of support is.

The use of the BF brings one more feature to the table
which is not yet discussed: information synthesis (e.g.,
Kuiper et al., 2013). Though not exclusive to the BF,
synthesis is very easily conducted with the BF. With in-
formation synthesis, multiple BFs can be combined to
create a meta view on the support for a certain hypoth-
esis. It is necessary that the BFs under consideration
are calculated under the same conditions, that is, with
the same hypotheses. In the case of the theory based
method, this leads to an interesting possibility. If the
introduction section of the original paper is constructed
before collecting the data for that paper, there are two
datasets (the original and the replication) able to pro-
vide information on the replication hypothesis. By cal-
culating the BFtc twice, and multiplying the two BFtcs
a new overall BFtc is generated, combining the informa-
tion from both the original and the replicating study. For
the results based method this is not possible, since the
replication hypothesis is based on the results of the orig-
inal paper. This leads to an interesting discussion for
theory based method: can we assume that the hypothe-
ses from the introduction section are not influenced by
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the data from that very same paper? Ideally; this as-
sumption should be met, but is that also true in reality?

The approaches presented in this paper can
easily be executed using the R package bain
(https://informative-hypotheses.sites.uu.nl/software/
bain/, 2019). The approach presented in this paper is
therefore well within reach of psychological researchers
that want to execute a replication study in order to eval-
uate the results of an original study.
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Appendix

The Approximate Adjusted Fractional Bayes Factor

The Approximate Adjusted Fractional Bayes
Factor (AAFBF) is implemented in the R package bain
and was developed such that it can be applied in a wide
range of statistical models for the evaluation of informa-
tive hypotheses in addition to the traditional null and
alternative hypotheses. The statistical background of
the AAFBF can be found in (Gu et al., 2018; Hoijtink,
2022; Hoijtink, Gu, et al., 2019a, 2019b), more practi-
cally oriented tutorials about the use of the AAFBF can
be found in (Hoijtink, Gu, et al., 2019a; Van Lissa et al.,
2020). In this appendix the AAFBF, simplified to the
form it attains in the context of ANOVA models, will be
presented.

The Bayes factor of Hi, which denotes either a
null (H0) or an informative hypothesis (Hi) versus the
unconstrained hypothesis Hu can be written as the ratio
of two marginal likelihoods:

BFiu =
m(D|Hi)
m(D|Hu)

=
fi
ci
, (A1)

where D denotes the data, that is, for an ANOVA, group
membership and score on the dependent variable for
each person. As was shown by Klugkist et al. (2005),
this ratio of two marginal likelihoods can be rewritten
in term of the ratio of the fit fi and complexity ci of Hi.

The "approximate" in AAFBF results from the
fact that the fit is computed with respect to a nor-
mal approximation of the posterior distribution of µ =
[µ1, ..., µG], where G denotes the number of groups in
the ANOVA:

g(µ|D) = N(µ|µ̂,Σ), (A2)

where µ̂ denotes estimates of the means, and Σ the co-
variance matrix of the estimates which is diagonal with
elements σ2/Ng for g = 1, ...,G, where σ2 denotes the
pooled within groups variance, and Ng the sample size
in group G. Already for relatively small sample size per
group (e.g., 20) the normal approximation becomes vir-
tually indistinguishable from the true (a t-distribution)
posterior distribution of the means. The fit is

fi =
∫
µ∈Hi

g(µ|D)dµ. (A3)

It is illustrative to note that for hypotheses constructed
using only inequality constraints, the fit is the propor-
tion of the posterior distribution in agreement with Hi.
In general it holds that the larger the fit the larger the
support in the data for Hi.
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The complexity is based on the "adjusted" "frac-
tional" prior distribution corresponding the posterior
distribution:

h(µ|D) = N(µ|µad j,Σ f rac), (A4)

where the adjusted prior mean µad j is a value on the
boundary of Hi and its complement Hc. For exam-
ple, the complement of H0 : µ1 − µ2 = 0 is Hc : "not
Hi" and therefore any µ1,ad j = µ2,ad j can be used as
the prior mean. Analogously, a value on the bound-
ary of µ1 > µ2 > µ3 and its complement would be
µ1,ad j = µ2,ad j = µ13,ad j. For interval hypotheses like
2 < µ < 4, µad j is set equal to the mean of the interval,
that is, for setting the mean of the prior distribution this
hypothesis is treated analogously as µ = 3. The prior co-
variance matrix is based on a fraction of the information
in the data with respect to the µ’s, that is, Σ f rac = Σ∗1/b,
where b = [b1, ..., bG] with bg = 1/G ∗ J/Ng, denotes the
fraction of information in group G used to specify the
prior variance of the mean in group g. The parameter J
will be elaborated in the next paragraph. The complex-
ity is

ci =

∫
µ∈Hi

h(µ|D)dµ. (A5)

It is illustrative to note that for hypotheses constructed
using only inequality constraints, the complexity is the
proportion of the prior distribution in agreement with
Hi. This implies that the Bayes factor of an informative

hypothesis versus its complement can be written as:

BFic =
fi
ci
/

1 − fi
1 − ci

. (A6)

In general it holds that the larger the complexity the less
specific, that is, the less parsimonious Hi.

The prior means are chosen in the manner elab-
orated in the previous paragraph to ensure that both
BF0u and BFic are consistent (Gu et al., 2018; Hoijtink,
Gu, et al., 2019a), that is, if the sample size increases
these Bayes factors go to 0 if Hu or Hc is the best hy-
pothesis and to infinity if H0 or Hi is the best hypothe-
sis. This holds for any value of J. The prior variances
are chosen in agreement with the minimal training sam-
ple principle (see, for example, Berger & Pericchi, 2004;
O’Hagan, 1995), that is, what is the smallest sample size
that allows estimation of the parameters of the ANOVA
model (the answer is G + 1). In the AAFBF J is chosen
not equal to the minimal training sample size, but equal
to the number of independent constraints used to spec-
ify the hypothesis of interest. In case of H0 : µ1 = µ2 = µ3
the number of independent constraints equals two, the
same holds for Hi : µ1 > µ2 > µ3. Finally note, that
the choice of J is only relevant if the goal is to eval-
uate a hypothesis specified using equality or inequal-
ity constraints, in all other cases (hypotheses specified
using only inequality constraints that are not interval
hypotheses) the Bayes factor is completely insensitive
to the specification of J (Hoijtink, Mulder, et al., 2019;
Mulder, 2014).
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