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How Can I Study from Below, that which Is Above? Comparing
Replicability Estimated by z-curve to Real Large-Scale Replication

Attempts
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Z-curve is an analytic technique with which one can estimate the percent of a set of
studies of interest that would replicate if one were to run actual replication studies.
I compared the estimates z-curve yields to the outcome of real large-scale replication
studies, such as the Open Science Collaboration (2015) work or the various Many
Labs projects (e.g., Klein et al., 2014). I collected p-values from the original studies
examined in six different large-scale replication efforts to the extent possible, ran z-
curves on all the original studies, and compared the z-curve results to the results of the
actual replication studies. My results show that across 163 replication studies taken
from the six replication efforts, 85 (52.15%) showed statistically significant results
in the expected direction as indicated by the authors of the replication studies. The
outcome of the z-curve of all these studies was accurate, with the midpoint between
the expected replication rate and the expected discovery rate, 50.55%, being almost
exactly the same as the true replication rate. Its replicability estimate was also more
accurate than that of p-curve analysis. Comparison of z-curve analysis of studies that
did successfully replicate to studies that did not does suggest heterogeneity in the ac-
curacy of its estimates, however. The pros and cons of z-curve analysis are discussed.

Keywords: z-curve, p-curve, replicability, replication studies

Replicability has become a central issue in psycho-
logical science (Nelson et al., 2018). While several
events in the early 2010s gradually brought replication
to researchers’ attention, the event that is most widely
cited as sparking the so-called replication crisis is a large
study that attempted to replicate 100 effects in social
and cognitive psychology and showed a replication rate
of only 36% (Open Science Collaboration, 2015). Since
then, primary replication studies have become much
more popular: a PsycINFO search for replication studies
yields 290 hits for the period between 2000 and 2011,
while the same search for studies published after Jan-
uary 1st, 2011 yields 999 hits. However, it is not always
practical to perform a large-scale replication effort, such
as the Many Labs replication studies (e.g., Klein et al.,
2014). Sometimes there are simply too many studies in
an area to replicate them all, or one may want to assess
the estimated replicability of a set of studies before ex-
pending a lot of time and effort and possibly money on
a replication effort.

Consequently, analytic techniques for assessing repli-
cability without performing replication studies have be-
come popular as of late, both as tools in and of them-
selves and as supplements to meta-analyses. The most
popular technique to this point is p-curve analysis (Si-

monsohn et al., 2014), but recently an extension of
and improvement on p-curve called z-curve analysis has
been created (Bartoš & Schimmack, 2020; Brunner &
Schimmack, 2020). As z-curve is still relatively new
and researchers may wonder about the accuracy of its
estimates, the purpose of my current study is to assess
the accuracy of z-curve’s estimates of replicability. I do
this by applying z-curve analysis to studies where actual
replication attempts exist and comparing estimates of
replicability yielded by z-curve to the replication esti-
mates found in actual replication studies. I proceed by
explaining to an extent how z-curve works as an analytic
technique, including why it uses p-values as the unit of
analysis in assessing replicability and how the technique
itself calculates the estimates it yields. I then describe
the need for a validation study on its accuracy and how
I go about conducting such a study.

The Relationship Between p-values and Replicability

Z-curve analysis, like p-curve analysis, capitalizes on
the relationship between the distribution of a group of
p-values and replicability (and the presence of question-
able research practices) in its analysis (Simonsohn et al.,
2014). The fundamental insight that underlies the logic
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of z-curve is that when researchers investigate true ef-
fects and conduct studies with strong statistical power
(Cohen, 1992), then the p-values corresponding to the
main statistical tests of such studies should tend to be
disproportionately below p = .01. Further, p-values
above p = .01 should be relatively rare, although not
completely absent (Sellke et al., 2001). On the other
hand, when a set of studies are under-powered and the
investigators engage in questionable research practices,
then there will tend to be a disproportionate number of
p-values above .01 but below .05.

To illustrate why this is, I will discuss three hypothet-
ical scenarios (Sotola, 2022). In Scenario I, a number
of researchers study a phenomenon where there is no
true effect—that is, the null hypothesis is true. For sim-
plicity’s sake, I will assume that the effect in question in
all three of my scenarios is a mean difference between
a treatment and control group. In this scenario, if the
p-values yielded by the studies such researchers con-
ducted were plotted as a histogram, they would form
a flat plane, because all p-values would be equally likely
to occur in the studies these researchers conducted. By
extension, this means that 5% of the p-values these re-
searchers find would be below .05. Assuming the in-
vestigators in question use the conventional threshold
for statistical significance of p = .05 and assuming that
journals tend to prefer publishing studies showing sta-
tistical significance (Rosenthal, 1979), they could get
these 5% of studies published and argue based on them
that they have discovered a true effect. However, those
effects would only replicate at the same rate as the
chosen threshold for determining statistical significance
(=.05). Put differently, one would expect only 5% of
the studies to replicate successfully.

In Scenario II, another group of researchers all in-
vestigate an effect where the true effect is small but
not zero. Let us assume that the effect is around Co-
hen’s d=.30. Let us further assume that these investi-
gators are good about conducting studies with strong
statistical power. Thus, they conduct all of their stud-
ies with sample sizes of 580, providing researchers with
statistical power of around 95% at an alpha level of
p=.05. Under these conditions, 95% of the p-values
these researchers obtain will be below p=.05. However,
crucially, a sample size of 580 also yields around 85%
power when one uses an alpha level of p=.01, meaning
that 85% of all p-values should fall below .01, while
only 10% should fall between .01 and .05. If one were
to plot these p-values as a histogram, one would find a
right-skewed histogram, or one where most values were
extremely low, and only a few were higher (Simonsohn
et al., 2014). Moreover, one would expect that such
studies would replicate rather well.

In Scenario III, I will assume the same base condi-
tions as in Scenario II: an effect size of d = .30. But in
this scenario, the researchers use sample sizes of 175,
which provides only around 50% statistical power with
an alpha of p=.05 and 27% power with an alpha of p =
.01. This means that 50% of all p-values will be below
.05, and only 27% will be below .01. Therefore, only
around half of all p-values that are significant will be
below .01, while the other half will be at various ranges
between .01 and .05. The studies that show a statisti-
cally significant result will be the ones that are likely to
get published, and so they are the ones that other re-
searchers would likely be exposed to. But those would
also be the studies most likely to have overestimated the
true effect size (Gelman & Carlin, 2014), meaning that
the effect sizes that get published will tend to be larger
than d = .30. Accordingly, if other researchers attempt
replication studies with the inflated effect size estimates
in mind while conducting a priori power analyses, they
are likely not to find that the previously published find-
ings replicate at an ideal rate.

Comparing these three scenarios illustrates why one
can make inferences about the replicability of stud-
ies based on the distribution of p-values. The studies
yielded by Scenario I. are unlikely to replicate success-
fully simply because the underlying effect is null, and
the published studies are based entirely on researcher
degrees of freedom (Simmons et al., 2011). The studies
yielded by Scenario II are likely to replicate, because the
underlying effect is a true effect, and the original studies
were conducted with strong statistical power. Finally,
the studies yielded by Scenario III are likely to repli-
cate at a slightly more favorable rate than those from
Scenario I, but still are likely not to replicate at the
same rate as in Scenario II. These three scenarios are
of course extreme, and the reality in the field is likely
some variation on all three depending on the size of the
true effects being studied, whether there is a true ef-
fect, the practices of the researchers, and the practices
of the journals to which the researchers in question tend
to submit their work. They do, however, make it clear
why the distribution of p-values can provide clues to the
replicability of the studies in question.

Z-curve Analysis

This relationship between p-values and replicability
is what z-curve capitalizes on (Bartoš & Schimmack,
2020). z-curve analysis is an extension of and improve-
ment on the now-popular p-curve analysis. It uses the
inferences one can make based on the distribution of
p-values to estimate the replicability of the studies that
generated the p-values entered into the analysis. This
makes it similar to p-curve, except that in p-curve, p-
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values are analyzed directly, whereas in z-curve, the p-
values are converted to two-tailed z-statistics. Further,
z-curve analysis assumes that each p-value comes from
a different population of studies, whereas an assump-
tion of p-curve analysis is that the studies that generated
the p-values entered are from the same population of
studies. Therefore, z-curve performs better under con-
ditions of effect size heterogeneity (Brunner & Schim-
mack, 2020).

The unit of analysis in z-curve, then, is the afore-
mentioned two-tailed z-statistics converted from the
p-values extracted from the studies of interest. The
z-statistics are actually the absolute values of the z-
statistics, because one cannot know for certain the di-
rection of the effect tested in the original study. There-
fore, there are no negative z-statistics entered into a
z-curve. Also, only significant p-values—or z-statistics
above 1.96—are entered into the analysis, so the z-
statistics analyzed are truncated at a value of 1.96. A fi-
nite mixture model estimated using these values is then
estimated. Effectively, what this does is allow one to
look at a set of studies as they appear after selection
for significance and fill in the empty part of the distri-
bution, or the complete distribution of z-statistics one
would see if one had access to all studies conducted,
published or unpublished. For those interested in learn-
ing more about the technical side of what z-curve does,
they should seek out the original z-curve paper (Brun-
ner & Schimmack, 2020), and I would highly recom-
mend seeing Figure 1 in Bartoš and Schimmack (2020,
p.9), as it makes what z-curve does more intuitive.

Once the complete distribution of z-statistics is esti-
mated, one can assess the average power of the origi-
nal studies (that were statistically significant) and the
percent of the original studies that one would have ex-
pected to show statistical significance given the average
power of the original studies (Brunner & Schimmack,
2020). The average power of the original studies is
taken as an estimate of the percent of studies one ex-
pects to replicate if one were to conduct the studies in
exactly the same way. This value is called the expected
replication rate. The percent of studies that one would
have expected to show statistical significance given the
average power of all original studies—including hypo-
thetically missing studies that may not be published—is
called the expected discovery rate. The distinction be-
tween the estimated replication rate and the estimate
discovery rate is that the former is the average power es-
timated for the original studies entered into the z-curve,
while the latter is estimated based on the complete dis-
tribution, including hypothetically missing studies.

To my knowledge, z-curve has so far only been used
a few times in the published literature (Bartoš & Schim-

mack, 2020; Schimmack, 2020; Sotola, 2022). This is
understandable because it is relatively new compared
to p-curve. However, some may remain skeptical of the
accuracy of its estimates, specifically, about whether its
estimates correspond to the actual percentage of stud-
ies that would replicate if one were hypothetically to
run replication studies. I thought it would help to con-
vince people of the validity of z-curve analysis to apply
it to studies for which actual replication attempts exist.
Moreover, it would be another mark in z-curve’s favor
if I could show that its estimates corresponded well to
actual replication attempts.

To do this, I select several large-scale replication
efforts—studies like the Open Science Collaboration
(2015) and the Many Labs replication studies (e.g.,
Klein et al., 2014; Klein et al., 2018)—and apply z-curve
to the original studies for which replication studies were
conducted. This allows me to compare the estimated
replication rate and estimate discovery rate the z-curves
yield to the replication rate shown in the replication ef-
forts as a way of assessing the accuracy of z-curve’s esti-
mates. I take several large-scale replication efforts, code
the p-values from the original studies to the extent that
that is possible based on the information the authors of
the replication studies provide, and I apply z-curve to
each individual replication effort for which I could code
10 or more p-values. I use 10 as a threshold, because
the z-curve package in R does not allow the analysis
to run if there are fewer than 10 significant p-values
entered. Further, z-curve’s estimates become extremely
inaccurate with fewer p-values, and well more than 10
is usually recommended for running a z-curve analysis.

Doing this allows me to compare the estimated repli-
cation rate and estimated discovery rate to the outcome
of each individual replication effort. In addition, I ag-
gregate across all of the replication efforts from which
I drew data (including those for which I was unable to
run an individual z-curve), and perform a single overall
z-curve of all of the studies included in all of the repli-
cation efforts I include. This allows me to do a single,
overall comparison of the replication rate suggested by
primary replication studies and the replication rate that
z-curve predicts. This last analysis is the most reliable,
because it includes the most p-values.

In addition, I make a few ancillary comparisons.
First, I z-curve studies where the replication study was
successful and studies where the replication study was
unsuccessful separately. I do this to compare the perfor-
mance of z-curve’s estimates in the aggregate—across
all replication studies—and its performance in narrower
circumstances. Arguably, one of the weaknesses of z-
curve analysis is that it is difficult to comment on the
degree to which its results are meaningful for the out-
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come of any one replication study. Applying z-curve
analysis to studies where one already knows the out-
come of an actual replication study may reveal underly-
ing heterogeneity in the accuracy of z-curve’s estimates
that is masked by aggregating across all possible stud-
ies. The second ancillary comparison I make is between
z-curve analysis and p-curve analysis. z-curve analysis
builds upon p-curve analysis and is meant to be an im-
provement on it (Bartoš & Schimmack, 2020; Simon-
sohn et al., 2014). Indeed, past work has shown that
p-curve overestimates the average statistical power of
the studies included relative to z-curve analysis. This is
because an underlying assumption of p-curve analysis
is that all of the p-values entered come from effects that
are all testing a single effect. In other words, p-curve as-
sumes effect size homogeneity. However, z-curve analy-
sis assumes heterogeneity: that each study could come
from a different population of studies. To add to the
comparisons others have made in this regard, I com-
pare the outcome of a p-curve analysis to the outcome
of a z-curve analysis, both for the overall analysis of all
replication studies and for the comparison of success-
fully replicated to not successfully replicated studies.

I predicted that the estimated replication rate of each
z-curve would be a slight overestimation of the actual
replication rate, and that the estimated discovery rate
would be a slight underestimation of the actual replica-
tion rate. As the creators of z-curve have pointed out,
the estimated replication rate tends to be an overesti-
mation of the percent of studies that are actually pre-
dicted to replicate (Bartoš & Schimmack, 2020). This is
because the estimated replication rate is estimated un-
der the assumption that the original studies can be con-
ducted under exactly the same conditions as the original
study was conducted. This assumption is rarely true,
which means that the actual replication rate will end
up being lower than the estimated replication rate due
to both alterations in the conditions under which the
replication studies are done and regression toward the
mean. On the other hand, one can take the estimated
discovery rate as a slight underestimation of the per-
cent of studies one would expect to replicate. This is
because the estimated discovery rate is the percent of
studies—including studies that hypothetically may not
have made it into published form due either to publica-
tion bias or QRPs—that one would originally have ex-
pected to show statistical significance. This is estimated
with both the original studies entered into the z-curve
and the hypothetical unpublished studies. Furthermore,
I predicted that z-curve analysis will yield more favor-
able replicability estimates for the studies that success-
fully replicated as compared to those that did not; and
I predicted that z-curve analysis’s estimates would be

more accurate than those yielded by p-curve analysis.

Method

Replication Study Selection

I decided to use widely cited and well-known repli-
cation efforts. These were: the Open Science Col-
laboration’s (Open Science Collaboration, 2015) repli-
cation studies of 97 psychological studies; Camerer
et al. (2018)’s replication studies of 21 social science
studies published in the journals Nature and Science;
Soto (2019)’s Life Outcomes of Personality Replica-
tion (LOOPR) Project, which ran replication studies for
78 correlations between the Big Five personality traits
and significant life outcomes; and the Many Labs 1-3
projects (Ebersole et al., 2016; Klein et al., 2014; Klein
et al., 2018). The Many Labs 1 project ran replication
studies for 13 classic and contemporary psychological
findings; Many Labs 2 ran replication studies for 28
classic and contemporary psychological findings; and
Many Labs 3 ran replication studies for 10 psycholog-
ical findings each. I did not include the Many Labs 4
study, because it only focused on replicating a single ef-
fect—the mortality salience effect (Klein et al., 2018).
I also did not include the Many Labs 5 study (Eber-
sole et al., 2020), because it re-ran replication studies
that originally had replication attempts included in the
OSC’s work, so I did not want to include some studies
in the analyses twice. So my evaluation was based on
six different replication efforts.

Data Extraction Method

In coding p-values to include in my z-curves, I relied
exclusively on the exact test statistics from the original
studies that the authors of the replication efforts re-
ported either in the body of the paper they published
or in supplemental materials. I used the test statis-
tics I extracted to find exact p-values at the following
link: Quick Statistics Calculators (socscistatistics.com).
If I computed a precise p-value from a test statistic re-
ported that was slightly above .05 but that the authors
claimed was statistically significant, then I coded it as
.049999 so that it would still be included in the z-curve
when I ran the analysis. I assumed that if a replication
study was being run on an effect, then it must have at
least been treated as statistically significant in the orig-
inal study, even if the exact p-value was slightly above
.05. In addition to coding test statistics from each to-
be-replicated study, I also coded whether the authors of
the replication study indicated that the study success-
fully replicated. All the coding from my extraction pro-
cess is posted on the Open Science Framework (OSF;
https://osf.io/uge5r) page for this study. I now discuss

https://osf.io/uge5r
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the coding process for each replication effort individu-
ally, because I had to use slightly different methods to
extract data for my analyses from each replication study
I selected.

Open Science Collaboration

Open Science Collaboration (2015) did not include
test statistics or effect sizes or sample sizes from the
original studies in their published paper. However, on
their OSF page, they posted replication reports for each
replication study that they completed and reported in
their paper. These reports were written up by each sep-
arate team of researchers who ran each individual repli-
cation study. Many of them listed the test statistic cor-
responding to the finding from the original study which
they hoped to replicate. This is where I extracted the
test statistics to be included in my analyses. If there
were multiple effects which the replication study was
meant to replicate, I coded the one that they made clear
was the crucial finding they hoped to replicate. If they
did not make it clear which finding was the most crucial,
I coded the first one that the authors of the report listed.
In all, 66 of the 98 replication reports included enough
information for me to extract test statistics, from which
I could extract exact p-values. Near the end of each
report, the authors summarized whether they believed
they had or had not successfully replicated the finding in
question, and this is how I coded whether the individual
studies replicated.

Camerer et al. (2018)

Camerer et al. (2018) included effect sizes in the
form of Pearson correlation coefficients and sample
sizes from the original studies for which they ran repli-
cation studies in Table 3 of their supplementary ma-
terials. I used these correlation coefficients and sam-
ple sizes to extract exact p-values at the following link:
https://www.socscistatistics.com/pvalues/
pearsondistribution.aspx. Further to the right in the
same table, there was a column indicating whether each
study successfully replicated with a simple “yes” or “no,”
and I used this to code whether each study had success-
fully replicated. Thus, I was able to get p-values from
all 21 studies for which Camerer et al. (2018) ran repli-
cation studies.

The Life Outcomes of Personality (LOOPR) Project

(Soto, 2019) included effect sizes and sample sizes
from the original studies in Table 1 of the paper (p.
714). Most of these effect sizes were reported as Pear-
son correlation coefficients, but some were reported as
standardized regression coefficients. I only coded those

that were reported as Pearson’s r, because it is not pos-
sible to compute an exact p-value using only a stan-
dardized regression coefficient, even if one has the sam-
ple size. Furthermore, there were cases in which the
LOOPR Project ran replication studies of several effects
that came from a single original study. In z-curve, as
in p-curve (Simonsohn et al., 2014), the p-values one
analyzes must be independent of one another. That is,
they must be from separate samples. Therefore, I only
coded the first effect size listed in the table from each
study from which the LOOPR Project drew multiple ef-
fect sizes to replicate. It was not indicated specifically
which effects the LOOPR Project replicated were from
the same study in their table or their supplementary
materials, but I assumed that if two or more effects in
their table were listed alongside the same exact sam-
ple size that they were from the same original study. I
computed exact p-values from the test statistics at the
same link I used for Camerer et al. (2018)’s work. This
extraction process resulted in 33 p-values I could ana-
lyze. I coded whether each study replicated using the
“Replication success rate” column in Soto’s Table 1. If
the success rate was 100%, I coded it as successfully
replicated, and if it was anything below 100%, I coded
it as unsuccessful.

Many Labs 1

The Many Labs 1 effort did not list information from
which I could compute p-values in their published pa-
per (Klein et al., 2014). However, they posted a sup-
plemental document in which they reported the origi-
nal test statistics for six out of the 13 effects from the
original studies for which they ran replication studies.
I only included cases where the authors provided the
test statistics reported in the original study reports, as
that was the only way that I could find exact p-values
from the original studies. I coded these six test statistics
and extracted exact p-values using the calculators at the
following link: https://www.socscistatistics.com/tests/.
I coded whether the replication study was successful
based on the overall result reported in the far-right col-
umn of Klein et al. (2014)’s Table 2 (p. 148). I note
here that z-curve analysis does not run if fewer than 10
p-values are entered for analysis, so I could not run an
individual analysis on the Many Labs 1 studies. How-
ever, I include these six studies in my overall z-curve
analysis.

Many Labs 2

Many Labs 2 ran replication studies for 28 studies,
and they listed test statistics from all the original studies
in the text of their article, followed immediately by the
outcome of their own replication studies (Klein et al.,

https://www.socscistatistics.com/pvalues/pearsondistribution.aspx
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2018, ps. 453-467). I extracted the test statistics from
the original studies and used them to compute exact p-
values. I coded for whether the replication studies were
successful based on what the authors wrote about the
outcome of their replication study in the text immedi-
ately after they reported the test statistic from the orig-
inal study. So for Many Labs 2, I was able to code all 28
studies for my analyses and had enough p-values to run
an individual z-curve.

Many Labs 3

For the Many Labs 3 effort, I was able to extract p-
values in the same way as for Many Labs 2, as the au-
thors also reported test statistics from nine out of the
10 original studies for which they ran replication stud-
ies (Ebersole et al., 2016, ps. 73-77). I used these test
statistics to find exact p-values, and coded for whether
each study successfully replicated by looking at the null
hypothesis significance tests reported in the far-right
column of their Table 3 (p. 73). Thus, I was able to code
nine p-values from this replication effort, meaning that I
also could not run an individual z-curve on it. However,
like with Many Labs 1, I include it in my overall z-curve
analysis.

Analysis Plan

I ran individual z-curves on those replication efforts
for which I was able to extract at least 10 p-values. Fur-
ther, I aggregated across all replication efforts and ran
a z-curve including all p-values extracted from all stud-
ies for which replication studies were run in one of the
replication efforts from which I extracted data. I used
the z-curve package in R (Bartoš & Schimmack, 2020) to
run my analysis. While z-curve yields several estimates,
I will focus on two: the expected replication rate (ERR)
and the expected discovery rate (EDR). The former is
effectively the average power of the studies included in
the z-curve. The average power of the statistically sig-
nificant studies is taken as an estimate for the percent-
age of the studies that one would expect to replicate if
one were to do the studies again in exactly the same
way. This is because statistical power is the probability
that one will find a statistically significant effect if one
studies a true effect (Cohen, 1992). The EDR is the
percent of statistical tests that one have expected to be
significant based on the average power of the original
studies. The rest of the output from all of my z-curve
analyses is posted on the OSF page for this project.

I focused on these two estimates, because they are
the primary estimates of replicability that z-curve yields.
ERR is a slight overestimation of the percent of stud-
ies one would expect to replicate, because it is com-
puted under the assumption that each replication study

will be done under the exact same conditions as the
original study, a condition that is extremely difficult to
achieve. Therefore, the actual percent of studies that
would replicate should be slightly lower than the ERR.
The EDR, on the other hand, is a slight underestimation
of the percent of studies one would expect to replicate,
because it is based on the average power of all stud-
ies (hypothetically) conducted, including those that did
not show statistical significance. To compare z-curve’s
estimates to the results of actual replication studies, I
compare the replication rates in the actual replication
studies to the EDR and the ERR. I compute the differ-
ence between each z-curve estimate and the percent of
studies that successfully replicated in reality to assess
how close each estimate comes, and I also compute the
midpoint between the EDR and the ERR. Presumably,
the midpoint between the ERR and EDR should be the
most accurate estimate of replicability, since the EDR is
a slight underestimation and the ERR is a slight overes-
timation of the replication rate. I refer to the replica-
tion rates obtained in the replication efforts as the Ac-
tual Replication Rate (ARR) from now on for the sake
of brevity.

Results

I have displayed all crucial results in Table 1. It shows
the number of p-values I coded from each replication ef-
fort, the number of those p-values where the authors de-
clared that their replication attempt was successful, the
ARR, the ERR, the EDR, the difference between both z-
curve estimates and the ARR, and the midpoint between
the EDR and the ERR. I computed the differences be-
tween the EDR and ERR and the ARR by subtracting the
ARR from the z-curve estimate. Thus, positive numbers
indicate that z-curve overestimated the replication rate
and negative numbers indicate that z-curve underesti-
mated the replication rate. The z-curve of all p-values I
coded is displayed in Figure 1.
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Table 1

Comparison of Replication Rates in Actual Replication Studies to Estimates of z-curve
Replication Study No. of

p-values
Extracted

No.
Successfully
Replicated

Percent
Successfully
Replicated
(ARR)

ERR EDR ERRdiff EDRdiff ERR-EDR
Midpoint

Soto (2019) 33 25 75.75% 94.30%
[77.60%,100.00%]

75.10%
[41.70%,100.00%]

18.55% -0.65% 84.70%

Camerer et al. (2018) 21 12 57.14% 58.70%
[29.20%,89.70%]

42.10%
[5.00%,90.60%]

1.56% -15.04% 50.40%

Klein et al. (2014) 6 4 66.67% NA NA
Klein et al. (2018) 28 14 50.00% 46.20%

[25.10%,75.40%]
13.60%
[5.00%,64.80%]

-3.80% -36.40% 29.90%

Ebersole et al. (2016) 9 2 22.22% NA NA
Open Science Collaboration
(2015)

66 28 42.42% 58.30%
[39.00%,77.30%]

44.30%
[7.00%,71.30%]

15.88% 1.88% 51.30%

All Combined 163 85 52.15% 62.20%
[46.80%,73.80%]

37.90%
[9.60%,65.30%]

10.05% -14.25% 50.55%

Note. ERR = expected replication rate, EDR = expected discovery rate, ARR = actual replication rate, ERRdiff = the ARR subtracted from the
ERR, EDRdiff = the ARR subtracted from the EDR, ERR-EDR Midpoint = the exact midpoint between the EDR and ERR.
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As I expected, in all but one case, the ERR did, in-
deed, overestimate the ARR, and, again in all but one
case, the EDR underestimated the ARR. In the four in-
dividual z-curves that I was able to run, at least one of
the two z-curve estimates were within five percentage
points of the ARR. The EDR was most accurate for Soto
(2019, EDR = 74.10%, ARR = 75.75%), the ERR was
most accurate for Camerer et al. (2018) (2015; ERR =
58.70%, ARR = 57.14%); the ERR was most accurate
for Klein et al. (2018; ERR = 46.20%, ARR = 50.00%);
and the EDR was most accurate for the Open Science
Collaboration (2015, EDR = 44.30%, ARR = 42.42%).

While the outcomes for the z-curves of individual
replication efforts are quite variable, both in terms of
the confidence intervals they yielded and how accurate
each estimate was, this is not surprising, as z-curve’s
estimates can be highly variable when few p-values are
entered.

Thus, the overall z-curve analysis including all the
studies I coded is the one to take most seriously. It
shows that the overall ARR of 52.15% falls almost at
the exact midpoint between the ERR of 62.20% and
the EDR of 37.90%—50.55%. Put another way, z-curve
analysis was only two percentage points off from the
actual percent of studies that successfully replicated in
real replication studies across 163 different replication
studies.

Comparing Studies that Did Replicate to Those that
Did Not Replicate

A z-curve on only the studies where the replication
studies were successful (N = 86) revealed an estimated
replication rate of 77.40% [60.00%,88.10%], an esti-
mated discovery rate of 54.70% [16.20%,82.50%], a
Sorić false discovery rate of 4.40% [1.10%,27.30%],
and a file drawer ratio of 0.83 [0.21,5.19]. A z-curve on
only studies where the replication studies were unsuc-
cessful (N = 77) revealed an estimated replication rate
of 37.90% [24.20%,57.80%], an estimated discovery
rate of 22.20% [5.00%,44.50%], a Sorić false discov-
ery rate of 18.50% [6.60%,100.00%], and a file drawer
ratio of 3.51 [1.25,19.00].

Comparing z-curve Results to p-curve Analysis

A p-curve analysis run using the p-curve app (The p-
curve app 4.06) with all of the studies coded yielded
an estimated statistical power for the studies submit-
ted of 99.00% [98.00%,99.00%], and the p-curve it-
self is shown in Figure 2. The half p-curve of only
p-values below .025 suggested evidential value, z = -
30.87, p < .001, as did the full p-curve, z = -32.15,
p < .001; and the half p-curve suggested that statisti-
cal power was higher than 33%, z = 30.32, p > .999,

as did the full p-curve, z = 21.75, p > .999. The p-
curve of only studies where the replication studies were
successful suggested evidential value both for the half
p-curve, z = -30.06, p < .001, and the half p-curve, z
= -31.7, p < .0001. The analysis yielded an estimated
power of 99% [99.00%,99.00%]. The p-curve of stud-
ies where the replication studies were unsuccessful sug-
gested evidential value for both the half p-curve, z =
-12.85, p < .001, and the full p-curve, z = -13.69, p
< .001. The analysis yielded an estimated power of
85.00% [78.00%,91.00%].

Discussion

My results suggest that, overall, z-curve analysis
yields accurate replicability estimates, especially when
one considers both the estimated replication rate and
estimated discovery rate. This provides evidence for z-
curve’s real-world applicability: if one seeks to repli-
cate a set of studies of interest, one can use z-curve to
estimate the percent of those studies that will actually
replicate if one were to run replication studies that mim-
icked the method and conditions of the original studies
as closely as possible. z-curve’s estimate of replicability
is also much more accurate than the most immediately
available alternative, p-curve analysis. My p-curve of
the same set of test statistics yielded an estimated aver-
age power for the same set of studies of 99%, suggest-
ing that 99% of them would successfully replicate. This
is much more inaccurate than the estimated replication
rate from z-curve analysis of 62.20%, and is in line with
other work showing that p-curve tends to overestimate
average power in the presence of effect size heterogene-
ity (Brunner & Schimmack, 2020). So this should en-
courage z-curve to be used more widely to assess the
replicability of different areas of psychology.

That said, my comparison of only studies that suc-
cessfully replicated and only studies that did not suc-
cessfully replicate does reveal some variation in the ac-
curacy of z-curve. Specifically, the accuracy of the z-
curve of studies that did not successfully replicate and
the z-curve of studies that did successfully replicate
were not wholly desirable. Among the studies that did
successfully replicate, the actual replication rate was
100%, and for the studies that did not successfully repli-
cate, the actual replication rate was 0%, as indicated by
actual replication studies. The corresponding z-curve
analyses showed expected replication rates of 77.40%
and 37.90%, respectively. While the trend of these two
replicability estimates is in the right direction—the stud-
ies that successfully replicated showed a much higher
estimated replication rate than the studies that did not
successfully replicate—the estimates were, indeed, off
by not unsubstantial margins. Therefore, while the
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Figure 1

Plot of the z-curve Including All Coded p-values

overall estimated replication rate was roughly accurate,
this may mask heterogeneity in z-curve’s accuracy.

This finding speaks to some reasonable reservations
about z-curve’s usefulness. While it may be effective
at providing an aggregate assessment of replicability
across a heterogeneous sample of studies, aggregate es-
timates of replicability may mask variation in the rate at
which replication studies are successful and variation in
the accuracy of z-curve’s estimates across studies within
different areas. I believe my comparison of z-curves of
the studies that did and did not replicate hints at this,
although a more comprehensive test of this is beyond
the scope of my study. I will note here that past work
testing the accuracy of z-curve’s replicability estimates
with simulation methods still assumed that a single ef-

fect size of interest was what was being tested (Brunner
& Schimmack, 2020). The heterogeneity tested in that
study regarded variation in a single main effect of in-
terest, and not the heterogeneity that comes from many
studies designed to test (in some cases) wildly differ-
ent phenomena. I may tentatively suggest, then, that
z-curve’s replicability estimates may be most accurate
when the studies reviewed are from the same area or
test the same effect, even if there is heterogeneity within
the studies (cf. Sotola, 2022). They may be less accu-
rate if the studies reviewed are from a wide variety of
areas (cf. Schimmack, 2020). If one does run a z-curve
analysis of a wide variety of studies, then one should
note the limitations inherent in such an analysis.

Moreover, there is still little to indicate that z-curve’s
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Figure 2

p-curve of All Studies Coded

replicability estimates are meaningful when one’s focus
is whether an individual study will replicate successfully
or not. Because z-curve’s replicability estimates are al-
ways aggregate, they do not say much about the repli-
cability of any single effect one is interested in. If a
researcher is interested in a single effect of a treatment,
and a z-curve of studies on that treatment alongside un-
related studies is run, the estimated replication rate that
z-curve yields does not necessarily speak to the replica-
bility of the effect that that particular researcher is in-
terested in. Possibly the only case in which z-curve’s
estimates might be meaningful in this way is if the
studies included in the z-curve all test the exact same
effect—for example, if studies included in the z-curve
were only the studies from a meta-analysis of the treat-

ment in question.
But even then, interpretation of replicability esti-

mates would be complicated. If a researcher is focused
on a single main effect of some treatment, and runs a
z-curve on the effects from a meta-analysis of that treat-
ment, and finds an estimated replication rate of, say,
40%, it might not be straightforward for that researcher
to decide how to proceed. It is unclear if the 40% repli-
cation rate means that they should just proceed with
their study but make sure the study is highly powered;
whether they should run a replication study before run-
ning follow-up studies because the estimated replication
rate is below 100%; or if they should simply abandon
that area of research altogether due to low replicability
estimates. Probably some combination of factors would
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go into this hypothetical researcher’s decision: the cost
in both time and money of running a study on the ef-
fect; the real-world importance of the effect (e.g., one
of theoretical importance vs. a treatment that might
save lives); and the predicted size of the effect (cf. An-
vari et al., 2022). A comprehensive discussion of these
issues is beyond the scope of my work here, but it is an
important issue that researchers should ponder.

Finally, I should also note that, when interpreting the
outcome of a z-curve analysis, one should be sure to
examine both the estimated replication rate and the es-
timated discovery rate. My results showed that in some
of my individual z-curves, the estimated replication rate
was more accurate, and in some of them, the estimated
discovery rate was more accurate. So when evaluat-
ing the outcome of z-curve analyses, one should not fix-
ate on either individually, but consider both, and, ide-
ally, take note of the midpoint between the two values.
In my overall z-curve, which should have yielded the
most accurate results because it had the most p-values
included, the actual percent of studies that replicated
was almost the exact midpoint between the estimated
replication rate and estimated discovery rate. Inasmuch
as the former is an overestimation and the latter is an
underestimation of the actual percentage of studies that
are likely to replicate, I might tentatively claim that the
estimated replication rate functions as an upper thresh-
old for predicted replicability and the estimated discov-
ery rate functions as a lower threshold for predicted
replicability. Therefore, one should take the midpoint
between them as the best estimate of the percent of
studies that will actually replicate—an assertion which
one of the creators of z-curve has endorsed (i.e., Schim-
mack, 2022).

The reservations I have pointed out notwithstanding,
there is good reason to take z-curve’s replicability esti-
mates seriously (with caveats), even when one includes
studies from a wide variety of areas in the analysis. The
replicability analysis of only studies that successfully
replicated and those that did not replicate also reveals
that z-curve once again outperforms its most widely-
known competitor—p-curve analysis. p-curve analysis
yielded an estimated average power of 99% for the stud-
ies that did replicate, and 85% for studies that did not
replicate. While the former is more accurate, the lat-
ter is much more inaccurate than the estimated repli-
cation rate yielded by z-curve analysis. I point this out
here, because in assessing the merit of a new method,
it is important not only to compare it to what would be
ideal performance of the method—which one assumes
in this case would be 100% accuracy of the estimated
replication rate—but also to compare it to other avail-
able methods. If the new method outperforms the most

readily available alternative, one can take that as a rec-
ommendation for the new method. z-curve seems to
meet this criterion, at least when compared to p-curve
analysis. Perhaps it is not perfect, but it seems to be su-
perior to the most readily available and popular alterna-
tive for estimating replicability without running actual
replication studies.
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