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The untrustworthy evidence in dishonesty research

František Bartoš
Department of Psychological Methods, University of Amsterdam

Replicable and reliable research is essential for cumulative science and its applications
in practice. This article examines the quality of research on dishonesty using a sample
of 286 hand-coded test statistics from 99 articles. Z-curve analysis indicates a low
expected replication rate, a high proportion of missing studies, and an inflated false
discovery risk. Test of insufficient variance (TIVA) finds that 11/61 articles with mul-
tiple test statistics contain results that are “too-good-to-be-true”. Sensitivity analysis
confirms the robustness of the findings. In conclusion, caution is advised when relying
on or applying the existing literature on dishonesty.
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Introduction

The replicability of published literature has been, for
a long time now, challenged by the replication crisis
(Baker, 2016). Overestimated effect sizes, low statis-
tical power, and inflated evidence were documented
across a variety of disciplines (e.g., Bartoš, Maier, Wa-
genmakers, Nippold, et al., 2022; Bartoš et al., 2023;
Fanelli, 2010; Fanelli et al., 2017; Ioannidis et al., 2017;
Kvarven et al., 2020; Schwab et al., 2021; Stanley et al.,
2018; van Aert et al., 2019). Research on dishonesty
lies in the interdisciplinary area between social psychol-
ogy and experimental economics, which exhibit vary-
ing replication rates (Camerer et al., 2016; Open Sci-
ence Collaboration, 2015). While some recent replica-
tion attempts in dishonesty research have yielded pos-
itive results (e.g., Efendic et al., 2019; Prochazka et
al., 2021; Wouda et al., 2017), other replication at-
tempts failed to replicate previous findings (e.g., Kristal
et al., 2020; van der Cruyssen et al., 2020; Verschuere
et al., 2018). However, concerns regarding the trust-
worthiness of dishonesty research have recently esca-
lated due to a series of data fraud allegations and ar-
ticle retractions (e.g., DataColada blog posts 98, 109,
110, and 110, http://datacolada.org; Proceedings of
the National Academy of Sciences, 2021; Psychological
Science, 2023a, 2023b).

Concerns about dishonesty research were already
raised by Gerlach et al. (2019), who conducted so
far the most comprehensive meta-analysis on dishon-
esty. Gerlach et al. (2019) identified 130 articles
using at least one of four experimental paradigms
(sender–receiver games, coin-flip tasks, die-roll tasks,
and matrix tasks). Gerlach et al. (2019) used ‘standard-
ized report’ measure (Abeler et al., 2019) to quantify
the percentage of dishonest people in each setting and

extracted data from 558 experiments covering 44,050
observations. Although the standardized report allowed
Gerlach et al. (2019) to meaningfully meta-analyze re-
sults across different experimental settings, the trans-
formed estimates and standard errors (or test statistics)
provide less information about the publication process
required for publication bias adjustment (e.g., Bartoš,
Maier, Wagenmakers, Doucouliagos, & Stanley, 2022;
Duval & Tweedie, 2000; Maier et al., 2023; Stanley
& Doucouliagos, 2014; Vevea & Hedges, 1995). The
loss of information regarding the publication process
results from non-linear transformations applied to the
originally observed estimates. In other words, since se-
lection for statistical significance does not operate on
the ‘standardized report’ itself, the ‘standardized report’
provides less information about the publication process.
Despite this limitation, Gerlach et al. (2019) found a
“substantial indication of publication bias in almost all
measures of dishonest behavior” (p. 18), indicating that
“the magnitude of dishonest behavior may be falsely es-
timated” (p. 18).

This study further examines the quality of studies in-
cluded in Gerlach et al. (2019) by analyzing hand-coded
focal test statistics using z-curve (Bartoš & Schimmack,
2022; Brunner & Schimmack, 2020) and test of insuf-
ficient variance (TIVA, Schimmack, 2014). The results
suggest wide-spread selection for statistical significance,
lacking statistical power, increased risk of false-positive
results, and a significant proportion of too-good-to-be-
true results.

Methods

See https://osf.io/kbqga/ for data and analysis
scripts. The analysis was conducted in R (version 4.3, R
Core Team, 2021) using the zcurve R package (version
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2.3, Bartoš & Schimmack, 2020).

Data

I hand-coded test statistics of all focal hypothesis tests
related to dishonest behavior (i.e., results that support-
ed/opposed a hypothesized claim) from the 130 arti-
cles included in Gerlach et al. (2019).1 Whenever pos-
sible, I used the originally reported test statistics, com-
puted the test-statistics as the ratio of estimates and the
corresponding standard errors, or used the reported p-
values (original/recomputed test statistics are preferred
as they suffer less from rounding errors). Out of the
130 articles, 99 articles contained 286 extractable test
statistics (some articles reported only point estimates or
stars). The vast majority of extracted test statistics were
statistically significant; 193/286 test statistics were sta-
tistically significant on α = 0.05, and 233/286 test statis-
tics were statistically significant on α = 0.10.

Z-curve

Z-curve is a statistical method for evaluating the qual-
ity of a heterogeneous set of studies. It approximates
the distribution of statistically significant z-statistic in
published studies by employing a mixture of truncated
folded normal distributions. The mixture model pro-
vides a publication bias-corrected estimate of the mean
statistical power of published studies (Brunner & Schim-
mack, 2020). The mean statistical power of published
studies corresponds to the expected replication rate
(ERR), the proportion of exact replication studies pro-
ducing a statistically significant result in the same di-
rection (but see Held et al., 2022; Ly et al., 2019; Pawel
and Held, 2022 for other definitions and measures of
replications).

Z-curve allows us to extrapolate beyond the sample of
collected studies and provides an estimate of the mean
power of all conducted, and possibly unreported, stud-
ies Bartoš and Schimmack (2022). The mean power of
all conducted studies corresponds to the expected dis-
covery rate (EDR), the proportion of conducted studies
that were expected to be statistically significant. A dis-
crepancy between the EDR and the observed discovery
rate indicates selection for statistical significance (e.g.,
Rosenthal, 1979; Sterling, 1959)). Schimmack and Bar-
toš (n.d.) further demonstrated that EDR can be trans-
formed into false discovery risk (FDR), the upper bound
on false discovery rate—the proportion of false-positive
results in the published literature (Sorić, 1989).

Test of Insufficient Variance

TIVA is a statistical method for identifying “too-good-
to-be-true” results. It builds on the observation that p-

values generated from studies with fixed power trans-
form to z-statistics that follow an approximately nor-
mal distribution centered on a z-statistics corresponding
to the studies’ power with variance equal to 1 (Schim-
mack, 2014).2 Any heterogeneity in the power of the
original studies leads to z-statistics following a mix-
ture of the corresponding normal distributions. Con-
sequently, the variance of such a mixture is necessar-
ily larger than 1. TIVA uses this observation and tests
whether the variance of observed z-statistics is lower
than 1, indicating results that are unlikely to be ob-
tained under unbiased sampling (Schimmack, 2014).
While TIVA loses power to detect too-good-to-be-true
results under heterogeneity, simulations studies showed
it rarely exceeds the nominal error rate, making it a con-
servative test (Renkewitz & Keiner, 2019).

Sensitivity Analysis

One potential issue with hand-coding test statistics is
a bias on the side of the coder (i.e., me). The coder may
be more likely to code statistically significant test statis-
tics than statistically non-significant ones. Such a bias
would result in a negatively biased assessment of the
literature. To address this potential issue, I performed a
sensitivity analysis of the coding to assess the robustness
of the results.

I assessed the robustness of each result by randomly
replacing 5% to 100% (in steps of 5%) of the used test
statistics. The randomly selected test statistics were re-
placed with test statistics simulated from well-powered
and well-reported studies (power = 80%). Each ran-
dom replacement was repeated 1000 times. In the limit
(i.e., 100% replacement), the analyses should lead to
unbiased results. However, if only a small proportion
of the hand-coded test statistics required replacement
to alter the conclusions significantly, it would indicate a
lack of robustness in the presented findings.

Results

Z-curve

Figure 1 visualizes the z-curve conducted on all 286
extracted test statistics. The Figure highlights two find-
ings (a) a prominent peak of statistically significant z-
statistics just on the right side of a z-score corresponding
to the statistical significance criterion (z = 1.96, vertical
red line) and (b) a good fit of the z-curve model (blue

1In contrast to Gerlach et al. (2019), I coded test statis-
tics also from experiments that did not use one of the four
paradigms.

2A lower variance can be observed if the original statistical
tests do not provide properly calibrated p-values or if noncon-
forming test statistics are coded as confirming.
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Figure 1

Z-curve highlights a substantial selection for statistical
significance in studies on dishonesty.

line) to the observed distribution of statistically signif-
icant test statistics (blue histogram). The steep shape
of the estimated z-curve is indicative of the very low
expected replication rate, ERR = 0.378 [0.257, 0.491],
while the “valley of missing statistically non-significant
results” is reflected in the extremely low expected dis-
covery rate, EDR = 0.082 [0.050, 0.191]. The EDR esti-
mate is especially striking compared to the nine times
larger observed discovery rate, ODR = 0.69 [0.63, 0.74].
The false discovery risk was very high, FDR = 0.0.590
[0.0.224, 1.000], but accompanied by a large degree of
uncertainty due to the relatively small number of test
statistics.

A secondary z-curve analysis was conducted to as-
sess the sensitivity of the results to the potential non-
independence of the test statistics (as 61 articles con-
tributed more than one test statistic). The z-curve
model was re-estimated while randomly selecting a sin-
gle test statistic from each article (repeatedly to boot-
strap CIs). The adjustment for non-independence did
not meaningfully alter the results; ERR = 0.340 [0.238,
0.448], EDR = 0.075 [0.050, 0.144], FDR = 0.652 [0.312,
1.000].

Test of Insufficient Variance

All 61 articles with more than one test statistic were
assessed by TIVA. The analysis revealed that 11/61 ar-
ticles (18.0 [9.4, 30.0]%) reported results that were
deemed “too-good-to-be-true” when testing the vari-
ance of the corresponding z-statistics against 1 with
α = 0.05.

Sensitivity Analysis

The sensitivity analyses showed that the presented
results are robust to a considerably high percentage of
potentially biased coding. Replacing even 25% of test
statistics would not meaningfully alter the presented re-
sults. The detailed summary of sensitivity analysis to
the potential coder bias is visualized in Figure 2. The
x-axis depicts the proportion of replaced test statistics,
and the y-axis depicts the target estimate (panel A: ERR,
panel B: EDR, and panel C: FDR for z-curve, and panel
D: percentage of too-good-to-be-true results for TIVA).
The thick line corresponds to the median target estimate
across the 1000 replications, and the thin lines corre-
spond to a point-wise 95% quantile interval. The esti-
mate and 95% CI at 0% of replaced test statistics cor-
respond to the full sample estimate. Finally, the dotted
red lines correspond to desirable estimates from well-
powered and well-reported studies (i.e., ERR and EDR
= 0.80, FDR of less than 5% although the FDR esti-
mate converges to zero as all replacement studies are
performed on true alternative hypotheses, and 5% of
statistically significant TIVA results).

Discussion

The analysis of 286 test statistics from 99 articles
included in Gerlach et al. (2019) revealed significant
shortcomings in the quality of evidence in research on
dishonesty. In particular, the examined set of studies
suffered from low statistical power, high selection for
statistical significance, inflated false positive rate, and
many too-good-to-be-true results. Importantly, these
conclusions do not speak about the quality of any partic-
ular article—there are undoubtedly many well-executed
and well-reported studies. However, as a body of evi-
dence, these articles fail to inspire trustworthiness.

The z-curve estimates for research on dishonesty are
comparable to recently published estimates on motor
learning benefits (McKay et al., 2023), effects of va-
lenced odors on face perception and evaluation (Syr-
jänen et al., 2021), terror management theory (Chen
et al., 2023), or system justification (Sotola & Credé,
2022). However, the general estimate for social psy-
chology (Bartoš & Schimmack, 2022) or construal level
theory (Maier et al., 2022) seems to be slightly better.
Furthermore, top medical journals (Schimmack & Bar-
toš, n.d.), technology education research (Buckley et
al., 2022), and organizational research (Gupta & Bosco,
2023), or tools and interventions for mitigating risks for
gambling harm (McAuliffe et al., 2021), forced confab-
ulation effect (Riesthuis et al., 2023), and social me-
dia use and self-esteem van Anen, 2022 seem to be
of much higher quality. Finally, see Replicability-Index
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Figure 2

Sensitivity analysis to the hand-coding of the results shows robustness of results.

blog posts for psychological journals’ specific z-curve es-
timates based on automatically extracted test statistics
(e.g., https://replicationindex.com/2022/01/26/rr21/
for 2022 ratings).

Several limitations should be considered in the inter-
pretation of these findings. While including all studies
from Gerlach et al. (2019)’s meta-analysis removes the
issue of “cherry-picking” articles, the generalizability of
the presented conclusions might be limited. First, all
examined articles employed one of the four most com-
mon experimental paradigms. Other designs or non-
experimental studies might produce more reliable ev-
idence. Second, all examined articles were published
before 2019. There is reasonable hope that the ongo-
ing methodological reforms improved the quality of the
published literature. Third, all examined articles were

coded by a single coder. However, the sensitivity analy-
ses show that the results are robust to a large degree of
biased coding.

In conclusion, consumers of the academic literature
on dishonesty should be cautious when implementing
or extending existing findings. While the trustworthi-
ness of each study needs to be evaluated on an indi-
vidual basis, there are some generic indicators of repli-
cability. For example, studies with high sample sizes
and large test statistics (e.g., p < 0.001) are more
likely to replicate (Benjamin et al., 2018; Button et al.,
2013; Fraley & Vazire, 2014). Furthermore, studies
with open data can be re-analyzed with multiverse or
many-analyst approaches which assess the robustness
of the findings to the reported analytic choices (Gelman
& Loken, 2013; Hoogeveen et al., 2023; Stern et al.,

https://replicationindex.com/2022/01/26/rr21/
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2019; Wagenmakers et al., 2022). Finally, new research
should consider the registered reports format, which
leads to highly credible evidence (Chambers, 2013;
Chambers et al., 2015), practice modesty in interpret-
ing results, and transparency in highlighting limitations
(Hoekstra & Vazire, 2021).
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