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Abstract 
The share of wind power generation is steadily increasing and it reached 20.4% of Germany’s 
power supply in 2018. Thus wind power is becoming a critical infrastructure with major 
contributions to power supply and power system grid stability. Consequently a resilient 
operation of offshore wind farms (OWFs) is required under normal and disturbed conditions. 
Resilience stands for the ability of a complex system to proactively and reactively maintain its 
functionality and performance despite failures or manipulations.  
A functional model describes the technical behavior of engineered, cyber-physical systems in 
relation to the intended task or results of the system. It is a representation of the operation, 
functionality and performance of the system, e.g. in the form of a block diagram. The block 
diagram consists of components performing, according to their technical characteristics, 
specified functions on the inputs. Applied to the OWF the components can be grouped into 
several layers representing the main functional processes. 
Within this paper we consider the threat of system failures triggered through cyber-physical 
attacks, based on the vulnerability of the OWFs to such attacks as documented in the literature. 
Most of the main functional processes can be manipulated maliciously. 
The functional model is used to discuss the impacts of different scenarios of cyber-physical 
attacks and their resulting cascade effects, which may cause a non-resilient behavior of the 
OFW. Crucial parameters and signals can be manipulated maliciously. Limit thresholds can 
be exceeded by far even under normal environmental and power grid conditions. Excessive 
mechanical stresses, electrical and thermal loads can be realized, leading to extreme damage 
or even destruction of components/subsystems without the possibility of reactive intervention 
or timely recovery. 
We propose measures on component and functional level for closing the mentioned security 
gaps to ensure the resilience of the OWF.  
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1. INTRODUCTION  

The share of wind power generation is steadily increasing and it reached 20.4% of Germany’s 
power supply in 2018 [1]. Thus wind power is becoming a critical infrastructure with major 
contributions to power supply and power system grid stability [2, 3].  
 
In consequence, the demand for resilient operation of the offshore wind farms (OWFs) under 
normal and disturbed conditions such as disturbances, faults, terroristic and cyber-criminal 
attacks, and extreme weather conditions exists. According the Grid Transmission Codes the 
Fault Ride-Through (FRT) capability of the wind turbines (WTs) and the wind farms [2, 3] is 
now generally demanded. This capability is expressed by a curve, with a shape corresponding 
to a conceptual resilience curve, by which the tolerance of voltage disturbance is predefined in 
quantitative terms.  
 
The United Nations Office for Disaster Risk Reduction (UNISDR) defines resilience as the 
“ability of a system, community or society to resist, absorb, accommodate to and recover from 
the effects of a hazard in a timely and efficient manner” [4]. By comparison, the International 
Maritime Organization follows more a technical view and defines resilience as “the ability of a 
system to detect and compensate external and internal disturbances, malfunction and 
breakdowns in parts of the system” without loss of functionalities and preferably without 
degradation of their performance [5]. All definitions have in common that resilience has to be 
considered as impermanent system property, which is assessed by comparing the aimed level 
of functionality and performance with the level achieved under normal as well as disturbed 
conditions. For this purpose the system has to be furnished with means establishing a certain 
robustness and resistance against all relevant dangers.  

The main task of an OWF as a component of the transnational power supply system is the 
reliable provision of wind energy in compliance to its specification. Due to the variation of 
wind strength it can be expected that the power provided by a single windmill will vary between 
zero and the nominal power (design criteria). Like seen, wind speeds between 15 and 25 m/s 
are needed to meet the nominal power supply of 2 MW (Fig. 1a). The number of deployed 
windmills (e.g. 150) determines the nominal power of the OFW (e.g. 300 MW). If a margin 
would be foreseen in OFW design (more than 150 windmills) two things are enabled: On the 
one hand, the nominal power of OWF can be supported at lower wind speeds, if all windmills 
are in operation. On the other hand planned maintenance activities (m1) as well as small-scale 
failures (e1) cannot significantly disrupt the energy delivery by the OWF. However, additional 
repair and restoration measures are needed for the recovery of original OWF functionality and 
performance, if non-compensable failures (e2) have been occurred. Our example shown in 
Figure 1 also illustrates that the measurement of power supply is inadequate to indicate the 
current resilience level of OWF.   

If resilience is related explicitly to OWF functionality and performance, Figure 1b depicts the 
resilience behavior of the exemplarily OWF over time. The aim of resilience-enhancing 
measures is the retaining of functionality and performance as close as possible at 100%. 
Proactive measures are intended to avoid destructive events, to reduce their frequency, or to 
limit demolitions. A representative example is the use of condition monitoring to achieve an 
efficient and effective scheduling of maintenance and repair to ensure a reliable OWF operation 
within its system boundaries. 
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Figure 1  Illustrated example of influences on OWF power supply  

Proactive measures may also ensure a kind of “preparedness” in relation to unpredictable and 
unavoidable destructive events. Measures in this context are the provision of means needed for 
fire protection as well as the holding of resources for a quick repair in emergency cases. The 
actual realization of measures for damage containment, recovery and restoration are reactive 
by nature. They are induced in response to occurred destructions and done decisions. Enhanced 
resilience concepts consider, besides robust operation and capability for rebounding, also 
approaches to ensure a reliable operation nearby system boundaries (avoidance of cascade 
effects) and to maintain a sustained adaptability especially in relation to emerging threat 
situations (maintain flexibility to changes) [6]. A challenge in this context is the protection of 
the cyberspace for critical infrastructures such as OWF. 
 
There have already been examples of resilient as well non-resilient wind farm operation from 
experience. On 22.09.2009 there was a fault at the onshore substation of West Wind OWF near 
Wellington, New Zealand. A transformer had a circuit-breaker failure that resulted in a serious 
fire and fire service callout. A dip to 80% voltage, beneath the operational thresholds (under 
voltage), was seen on all three phases on the 110 kV connections for 2.5s. In Wellington it was 
reported that fluorescent lights went out briefly though the produced power did dip zero. The 
fault was cleared by the circuit breaker failure protection system within approximately 2.5 s. 
Immediately on fault clearance, the 110 kV voltage spiked up to 119 kV (over voltage), which 
triggered a fault ride-through reaction by the OWF control system by increasing the reactive 
power so that the voltage restored its normal operational value of 110 kV. The quick recovery 
of power supply and the behavior West Wind OWF in general on this occasion can be regarded 
as resilient [4] and this behavior corresponds to event (e1) in Figure 1.  
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In contrast to that the big blackout on 04.11.2006 interrupted the power supply of more than 15 
million households across Europe [7, 8]. Wind power generation was named as the main 
influence factor and this can be classified as a non-resilient behavior of OWF.  At the time wind 
generation units were automatically disconnected by their protection systems from the power 
grid if the frequency of the grid dropped below the threshold of 49.5 Hz. In the Western area 
of the grid the frequency was 49 Hz immediately after the disturbance. As a consequence 60 % 
of the wind power was disconnected in an uncontrolled way which exacerbated the frequency 
drop in the Western area. Therefore this behavior can be related to the event (e2) in Figure 1.  
 
Scope of this paper is the investigation of disturbances due to possible cyber-physical attacks 
on an OWF and the resulting response to them in relation to OWF resilience.  

For this purpose in chapter 2 a functional model of a generic OWF is introduced to represent 
the OWF operation, functionality and performance. It is an interconnected and multi-layered 
model demonstrating the main functional processes and the dependences/interactions between 
them, covering safety and security aspects, too. The model is the basis for the analysis in 
Chapter 4 since the model components are presented explicitly with their functions and the 
corresponding I/O parameters, signals and data.  

Chapter 3 discusses the IT infrastructure within the OWF, its control system networks and the 
design of the implemented controllers. Documented in the literature vulnerabilities of the OWF 
to cyber-physical attacks are reviewed and the resulting from them possibility for malicious 
manipulation of main functional processes.  

In Chapter 4 an analysis of the disturbances arising from specific cyber-physical attacks is given 
based on the functional model from Chapter 2. This includes the identification of the 
corresponding risk elements, the manipulated parameters, signals and thresholds as well as the 
resulting chains of effect. Alongside with this an evaluation of the impact of these disturbances 
is performed in relation to the resilience OWF, besides with risk assessment. In Chapter 5 a 
proposal is made for resilience-enhancing measures against these attacks. The measures are on 
component and functional level regarding both the proactive and the reactive aspect.  

In the final Chapter 6 we present initial conclusions and give an outlook for our future work.  

 

2. FUNCTIONAL SYSTEM MODEL AND RESILIENCE DEGREES OF A GENERIC 
OWF   

A functional model describes the technical behavior of engineered, cyber-physical systems in 
relation to the intended task or results of the system. It is a representation of the operation, 
functionality and performance of the system, e.g. in the form of a block diagram. The model 
represents the interaction of energy, matter and information needed for the system functionality, 
too. The block diagram consists of components performing, according to their technical 
characteristics, specified functions on the inputs. The inputs are parameters corresponding to 
flows of energy, matter, signals and data. The respective outputs are functions of the inputs 
under consideration of the internal/environmental conditions and other influencing factors. 
Applied to the OWF the components can be grouped into several layers representing the main 
functional processes as pictured and numbered, in Figure 2. 
 
The first layer corresponds to the conversion of energy. Within this layer the kinetic energy of 
the wind Ek,WIND is converted into electrical energy by the cluster of wind turbines PWTs. The 
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voltage of this energy is increased by the offshore and the landside substations so that the overall 
electrical energy POWF is fed into the grid as an output from the OWF. In the second layer data 
is acquired which is needed for the control and monitoring within the OWF. The measurements 
of the internal operational and the environmental conditions are done here and then transferred 
to the fourth layer. In third layer the corresponding data needed for the protection and 
maintenance is acquired and passed to the fifth layer in an analogous way.  
 

 

Figure 2.  Functional model of a generic OWF. Solid arrows are flows of energy/matter, 
dashed lines flows of signals/data. DAQ: data acquisition; contr/mon: control and 

monitoring; prot/maint: protection and maintenance; Ek, WIND: kinetic energy of the wind; 
PWTs: electrical energy from the wind turbines; POWF: electrical energy from the wind farm; 

env: influence of the environmental conditions; SCADA: supervisory control and data 
acquisition system; CMS: condition monitoring system; CC: control center 

 
In the fourth layer the control and monitoring of the operation and performance is executed 
within the OWF. The layer controls the conversion of energy and the feed of this energy into 
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the grid through automated control signals. This layer also monitors the thresholds in the related 
data. The normal operation mode of the OWF is a fully automated operation mode executed by 
the control systems within this layer based on the data from the data acquisition systems, its 
analysis and the internal/external reference signals. Manual operation through manual control 
signals is restricted to switching on and off of the WTs/OWF from the remote control center of 
the WF operator. 
 
The normal operational mode is present when all operational parameters and external 
conditions are within their thresholds, and when there is no interruption of signal or data flow. 
A disturbed operation occurs when the operational parameters are driven beyond the thresholds 
due to some component malfunction, failures, breakdowns, interruption of the data/signal flow 
or when the external conditions become outside of the specifications.  
 
The last fifth layer refers to the protection (safety/security) and maintenance. The layer protects 
the functionality and the structural integrity within the OWF by disturbed conditions. 
Respective safety/security measures are initiated through automated or manual protection 
signals. Concerning the wind turbines these measures are a shut-down or a fast shut-down 
procedure by an increase of the rotor blade angle by the protection system. According to the 
assessment of the system condition by the condition monitoring system (CMS) automatic 
maintenance signals are generated for execution of maintenance. Maintenance can be initiated 
through manual signals from the remote control center of the WF operator, too. 
 
The general relation between the resilience and the resilience-enhancing measures was 
discussed in Chapter 1. There is also a relation between the resilience of a power generating 
system, its system states and the implemented measures (actions) for prevention, emergency 
and restoration [9, 10]. Adapted from [10] to the generic OWF the conceptual curve describing 
this relation is shown in Figure 3.  

 

Figure 3. Conceptual resilience curve relating resilience, system states and measures of a 
generic OWF 
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The expected impacts from cyber-physical attacks discussed in this paper are added to the 
original curve in [10] as triggers for the transitions between system states next to these from the 
disturbances.  The measures proposed by us are added to the curve, too. 
 
Principally there are 5 possible operating states of the power generating system - based on the 
safety/security margins – normal, alert, emergency, in extremis (collapse) and restorative. A 
different degree of resilience is assigned to these states so that they can be regarded as states of 
resilience [9, 10]. So the resilience curve in Figure 3 maps the system states to the concept of 
resilience. The transitions between these states are initiated by disruptive events or by actions 
of the control/protection systems. So the transitions depend on the severity (impact) of the 
disturbance and on the effectiveness of the preventive and corrective control actions.  
The normal operation state corresponds to the highest degree of resilience Rnormal. Within this 
system state all operational thresholds are fulfilled and the safety (security) margins are 
adequate. A disruptive event leads initially to a violation of the margins, causing a transition to 
the alert state with a reduced degree of resilience Ralert. If preventive measures, restoring the 
normal state, are not undertaken a violation of the operational thresholds, i.e. disturbance, 
follows bringing the system to an emergency state with a further decreased resilience degree 
Rem. Emergency actions could bring the system to the restorative state, preserving the degree of 
resilience and preventing the system from transitioning to the in extremis state with the lowest 
possible resilience level Rext. However, a highly severe disturbance with a significant violation 
of the thresholds would lead the system directly to the in extremis state. The expected impacts 
from the cyber-physical attacks discussed in this paper correspond exactly to such disturbances 
However, the recovery time from these impacts would be much longer than the impacts of the 
usual disturbances (with no recovery from compared to the usual disturbances). Such a behavior 
and the corresponding resilience curve are termed as non-resilient [11]. Therefore we propose 
proactive and reactive measure to avoid such events. Our reactive measures correspond to the 
preventive actions depicted in Figure 3. Our proactive measures would preserve the normal 
operation state with no decrease of the resilience degree. 

 

3. VULNERABILITY OF THE OWF TO CYBER-PHYSICAL ATTACKS 

Cyber-physical attack (CPA) on physical systems aims at causing physical damages to the 
system through the IT environment. It differs from known viruses and malicious software, 
because it does not only affect the IT-system itself but also tries to cause physical damages. A 
major power outage due to a cyber attack on the control systems affecting about 220 000 
customers occurred on 23.12.2015 in the Ukraine [12]. By the CPA the starting point is 
exploiting some physical security weaknesses within the infrastructure (e.g. by a single WT, 
OSS, LSS, WF operator remote center) or the supply chain. The relatively light physical access 
to the infrastructures in hardly accessible sea regions in the case of OWF, which per se are 
difficult to control, makes the CPA possible. Through a physical security weakness malicious 
software is infiltrated within the communication systems of the infrastructure. This is made 
easier since cyber security requirements are usually not fulfilled within the OWF.  
 
The vulnerability of the wind farms to cyber-physical attacks has been demonstrated in the 
literature [13]. Several specific reasons were given for this vulnerability besides the above 
mentioned. Traditionally the control networks (SCADA) are unrestricted and use rather 
insecure SCADA protocols, such as OPC. The OPC protocol is used for the exchange of the 
real-time data, monitoring of alarms and events, and the setting and update of control parameter 
values. The protocol does not include any authentication or encryption. 
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The controllers used within the wind farm are PLC (programmable logic controllers) and PAC 
(programmable automation controllers).  The PACs run legacy operating systems. They are 
logged within the control networks in root mode – gaining access by a CPA to one (WT) 
controller gives an access to whole network. They are IP-addressable and so online 
reprogrammable. There is no authentication or encryption of the control/protection signals as 
well. Critical control and protection parameters or thresholds can be modified by accessing the 
controller Object Dictionaries and injecting corresponding Shared Data Object messages. For 
the purpose the layout of the Object Dictionary must be known, which is defined in the vendor 
Electronic Data Sheet. 
 
Thus the main functional processes are principally accessible to malicious manipulation as a 
consequence by manipulation of the corresponding operational parameters and thresholds, 
signals and data. 
   

4. IMPACTS OF CYBER-PHYSICAL ATTACKS ON THE OWF  

Based on the functional model in Chapter 2 we identify risk components with their functions 
and the corresponding chains of effect (propagation of the disturbance initiated by the 
manipulation) within the OWF regarding the scenarios of cyber-physical attacks discussed in 
the previous chapter. For the purpose we have developed a full functional model of the WT and 
the corresponding structures in a way analogous to mechatronics, consisting of the relevant 
cyber-physical systems. The cyber systems concern the WT operation (data acquisition, control 
and protection) as already discussed in Chapter 2. The structures are modelled as physical 
systems characterized by the dynamics from the respective domains. The model shows the 
couplings between all the systems explicitly. Therefore it is a detailed WT section in the block 
diagram in Figure. 2.  
  
We present two main scenarios. The first scenario concerns the manipulation of the control 
signals and thresholds of operational parameters in the mechanical control system of a single 
wind turbine. The chains of effect are pictured in Figure 4. By the first step (1) the WT controller 
is affected so that a value of the rotor blade angle β = β MIN is prescribed and the nacelle angle 
γ is kept fixed along the wind direction. The control signals of the electrical control system to 
generator (SG) and the invertor (SI) are not affected by this scenario. 
 
Alongside with this the thresholds of the rotor speed nRmax and the cut-out wind speed vcout must 
be manipulated in the protection system, either removed or excessively increased. Due to the 
levering out of the protection system the WT cannot be secured by a (fast) shut-down procedure 
since the rotor blade angle is kept at β = β MIN and no protective signal is sent for its increase. 
The consequence would be an excessive rotor speeds under normal wind conditions, step (2). 
These would cause excessive mechanical overloads result at step (3), affecting the drive-train 
and the nacelle. These excessive overloads would propagate to the tower and the transition 
piece at step (4) and (5), respectively. Excessive damage and even destruction of the main 
components is imminent and the destruction of the structures (nacelle, tower, transition piece) 
is possible, accompanied by loss of performance PWT of the WT (6). Another branch of the 
chain of effect is the propagation of the excessive overloads to the electrical system, step (4´). 
This would disrupt its functionality leading to the loss of performance PWT of the WT (5´), too. 
Applied to all wind turbines this scenario would affect the whole wind farm corresponding to 
a system collapse (in extremis state) with downtimes by at least a magnitude greater than the 
recovery times from the usual disturbances due to usual component failures. The usual WT 
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component failures result in approx. 400-450 hours downtime. In contrast the above scenario 
would cause either a damage of a single main component with approx. 1500-2700 hours 
downtime or the destruction of the structures demanding even bigger downtimes.    
 
 

 
 

Figure 4.  Chains of effect by scenario 1 
 
 
The second scenario concerns the manipulation of the control signals in electrical WT control 
system. The corresponding chain of effect is depicted in Figure 5. Initially the controller is 
affected (1) by manipulation of the control signals SG and SI, e.g. by repetitive step changes 
leading to voltage sags. Alongside with this the protection system can be levered out, e.g just 
by fixing the value of β so that no protection signal is sent for securing the WT by shut-down 
procedure when thermal or vibration thresholds are exceeded. The effect would be electrical 
disturbances at the converter and the invertor at normal grid conditions (2). These disturbances 
are characterized by large excursions of the resulting transient currents associated with 
overvoltage, very dangerous to the power electronics [3]. Thus excessive thermal overloads (3) 
can be realized at the converter and the invertor. Extreme damages of the power electronics 
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alongside with a fire threat are so possible, accompanied by loss of performance PWT of the WT 
(4). Due to the fire threat the destruction of these components or of the WT is possible, too. 
Another branch of the chain of effect is realized due the coupling of the electrical system to the 
drive-train. Thus the disturbances in the electrical system would excite abnormal additional 
vibrations in the drive-train (3´), propagating to the rotor (4´), nacelle (5´), the tower (6´) and 
the transition piece (7´). 
 

 

Figure 5.  Chains of effect by scenario 2 

Normal vibrations within the operational specifications are excited by the wind though the 
aerodynamics of the rotor blades, the nacelle and the nacelle. However the additional vibrations 
due to the electrical disturbances may superimpose the normal ones so that severe overall 
vibrations can arise with abnormal amplitudes and frequencies [14, 15] disrupting the 
performance PWT of the WT (8´). Again, applied to all WT within the wind farm this scenario 
would cause a system collapse (in extremis state) by magnitudes greater downtimes compared 
to the usual electrical disturbances. 
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5. MEASURES AGAINST CYBER-PHYSICAL ATTACKS   

Measures to prevent the cyber-physical attacks described in the previous chapter must take all 
aspects of the development and impact of the attacks into account. Therefore both proactive 
and reactive measures have to be considered, on component level as well as on functional level. 
 
Since most modern WTs are pitch-controlled and pitch-secured through the rotor blade angle a 
special attention must be payed to the related signals. Both the control and protection signals 
must be inaccessible to modification simply with Shared Data Object messages. This demands 
software changes in the layout of the controller Object Dictionaries and in the OPC protocols 
(read-only).  The same should apply to other crucial control/protection signals (e.g. nacelle 
angle, generator and invertor control signal) with the corresponding thresholds (e.g. rotor speed 
and the cut-out wind speed) as proactive measures. Besides the physical and the cyber security 
within the OWF must be generally increased proactively, e.g. through motion sensors/CCTV 
and through authentication/encryption of the OPC protocols. Physical access to all terminals, 
SCADA computers, maintenance interfaces must be strictly controlled through access 
restriction, too (e.g. digitally controlled doors, locks, access permissions, etc.). All these 
measures are illustrated by the proposed proactive measures in Figure. 3. 
 
Various reactive measures must be employed based on real-time techniques within the OWF. 
The reactive measures refer both to the detection of as well as to the response the OWF to an 
ongoing attack. Real-time monitoring and analysis is demanded for the detection of the attack. 
Plausibility (consistency) tests of the current parameter values and their thresholds through 
analysis of the real time would data allow the detection of deviation from the normal operation 
state caused by attacks as described in Chapter 4. Monitoring and analysis of the network traffic 
between and within the layers of the functional model would allow the detection of suspicious 
communication structures and traffic rates. Reference Technology Systems (RTS) simulate 
with a physical functional model the real system state in real time. Deviations between real 
behavior and model indicate abnormal activities. After detecting an attack response measures 
must be undertaken. These include, for example strategies for setting normal operation values 
of parameters/thresholds. Other measures would include the fast and safe shutdown of the 
OWP, the definition of recovery points and a strategy to reset to these recovery points with 
quick resumption of plant operation.  
 

6. CONCLUSIONS AND OUTLOOK 

We have developed a functional system model of the OWF. Through the model we have 
investigated the impacts of specific cyber-physical attacks on the OWF. The impacts can affect 
the OWF functionality and performance extremely and its behavior is clearly non-resilient 
thereby. The power grid can be severely affected, too. So major security gaps definitely exist 
concerning the OWF vulnerability to cyber-physical attacks. We have proposed therefore 
proactive and reactive measures for closing the above gaps which we can evaluate as plausible 
in qualitative terms based on the proposed functional model. 

The outlook for our future work includes the test of the described measures in hardware-in-the-
loop constellations. This would enable a numerical instead of a qualitative evaluation of the 
proposed measures. Besides this we want to develop a numerical model of the OWF based on 
the functional model presented here. This model would allow us to study the disturbances 
discussed here in quantitative terms.     
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