Retinal and optic nerve functions in incontinentia pigmenti: long-term elctrophysiological follow-up
DOI:
https://doi.org/10.5384/sjovs.vol13i2p15-20Keywords:
incontinentia pigmenti, visuell elektrofysiologi, visual electrophysiology, optical coherence tomography, retina, ultrasound examination, OCT, hereditary disorders, ultralydAbstract
Incontinentia pigmenti (IP) is a rare, X-linked, dominantly inherited disease affecting mostly females, which is best characterized as an autoimmune disease. It is a multisystem disorder affecting ectodermal tissues. Ocular abnormalities usually occur early in childhood, with subsequent retinal detachment and vision loss. Vision rarely remains intact until adulthood. We present the 17-year visual electrophysiological follow-up of such a rare patient and her mother. The mother was only a carrier, but the daughter developed various manifestations of IP. The aim of our investigations was to obtain information on the progression of functional deterioration in IP. Electroretinography (ERG), multifocal electroretinography (mfERG), visual evoked potentials (VEP), ultrasound (US) and optical coherence tomography (OCT) were performed at regular intervals between the patient’s ages of 9 and 26 years (2003 to 2020). From 9 to 22 years of age, a characteristic picture of spared vision with minimal ophthalmoscopic alterations and fluctuating ERG anomalies were observed in the left eye. It was only between the ages of 22 and 23 that subjective symptoms developed, and then complete loss of vision in the affected eye ensued rapidly. The right eye remained clinically asymptomatic throughout the observation period. The mother remained completely asymptomatic, but she showed similar ERG alterations. Electroretinography is a sensitive indicator of the activity of the ocular immune or inflammatory reactions in IP, and it readily detects their functional effect even in the absence of clinical symptoms. Thus, it is recommendable not only for the longterm functional follow-up of these patients, but probably also for early disease-specific screening. ERG recordings from the presented case suggest that the characteristic, asymmetric pattern of retinal functional involvement may be traced back to the different degrees to which the two eyes were exposed to the intermittent reactivations of the disease.
Metrics
References
Berlin, A. L., Paller, A. S., & Chan, L. S. (2002). Incontinentia pigmenti: a review and update on the molecular basis of pathophysiology. J Am Acad Dermatol, 47(2), 169-187; quiz 188-190. doi:10.1067/mjd.2002.125949
Cates, C. A., Dandekar, S. S., Flanagan, D. W., & Moore, A. T. (2003). Retinopathy of incontinentia pigmenti: a case report with thirteen years follow-up. Ophthalmic Genet, 24(4), 247-252. doi: 10.1076/opge.24.4.247.17237
Chen, C. J., Han, I. C., & Goldberg, M. F. (2015). Variable Expression of Retinopathy in a Pedigree of Patients with Incontinentia Pigmenti. Retina, 35(12), 2627-2632. doi:10.1097/IAE.0000000000000615
Cohen Tervaert, J. W., Colaris, M. J., & van der Hulst, R. R. (2017). Silicone breast implants and autoimmune rheumatic diseases: myth or reality. Curr Opin Rheumatol, 29(4), 348-354. doi:10.1097/BOR.0000000000000391
Goldberg, M. F. (1994). The blinding mechanisms of incontinentia pigmenti. Ophthalmic Genet, 15(2), 69-76.
Goldberg, M. F., & Custis, P. H. (1993). Retinal and other manifestations of incontinentia pigmenti (Bloch-Sulzberger syndrome). Ophthalmology, 100(11), 1645-1654. doi: 10.1016/s0161-6420(93)31422-3
Holmstrom, G., & Thoren, K. (2000). Ocular manifestations of incontinentia pigmenti. Acta Ophthalmol Scand, 78(3), 348-353. doi: 10.1034/j.1600-0420.2000.078003348.x
Hood, D. C., Cideciyan, A. V., Halevy, D. A., & Jacobson, S. G. (1996). Sites of disease action in a retinal dystrophy with supernormal and delayed rod electroretinogram b-waves. Vision Res, 36(6), 889-901. doi:10.1016/0042-6989(95)00174-3
Jandeck, C., Kellner, U., & Foerster, M. H. (2004). Successful treatment of severe retinal vascular abnormalities in incontinentia pigmenti. Retina, 24(4), 631-633. doi: 10.1097/00006982-200408000-00027
Miller, J. B., Papakostas, T. D., & Vavvas, D. G. (2014). Complications of emulsified silicone oil after retinal detachment repair. Semin Ophthalmol, 29(5-6), 312-318. doi:10.3109/08820538.2014.962181
Moya, R., Chandra, A., Banerjee, P. J., Tsouris, D., Ahmad, N., & Charteris, D. G. (2015). The incidence of unexplained visual loss following removal of silicone oil. Eye (Lond), 29(11), 1477-1482. doi:10.1038/eye.2015.135
O'Doherty, M., Mc Creery, K., Green, A. J., Tuwir, I., & Brosnahan, D. (2011). Incontinentia pigmenti--ophthalmological observation of a series of cases and review of the literature. Br J Ophthalmol, 95(1), 11-16. doi:10.1136/bjo.2009.164434
Oliveira-Ferreira, C., Azevedo, M., Silva, M., Roca, A., Barbosa-Breda, J., Faria, P. A., Falcao-Reis, F., & Rocha-Sousa, A. (2020). Unexplained Visual Loss After Silicone Oil Removal: A 7-Year Retrospective Study. Ophthalmol Ther. doi:10.1007/s40123-020-00259-5
Pastor, J. C., Puente, B., Telleria, J., Carrasco, B., Sanchez, H., & Nocito, M. (2001). Antisilicone antibodies in patients with silicone implants for retinal detachment surgery. Ophthalmic Res, 33(2), 87-90. doi:10.1159/000055649
Phillips, M. J., Webb-Wood, S., Faulkner, A. E., Jabbar, S. B., Biousse, V., Newman, N. J., Do, V. T., Boatright, J. H., Wallace, D. C., & Pardue, M. T. (2010). Retinal function and structure in Ant1-deficient mice. Invest Ophthalmol Vis Sci, 51(12), 6744-6752. doi:10.1167/iovs.10-5421
Rahi, J., & Hungerford, J. (1990). Early diagnosis of the retinopathy of incontinentia pigmenti: successful treatment by cryotherapy. Br J Ophthalmol, 74(6), 377-379. doi: 10.1136/bjo.74.6.377
Shaikh, S., Trese, M. T., & Archer, S. M. (2004). Fluorescein angiographic findings in incontinentia pigmenti. Retina, 24(4), 628-629. doi: 10.1097/00006982-200408000-00025
Smahi, A., Courtois, G., Vabres, P., Yamaoka, S., Heuertz, S., Munnich, A., Israel, A., Heiss, N. S., Klauck, S. M., Kioschis, P., Wiemann, S., Poustka, A., Esposito, T., Bardaro, T., Gianfrancesco, F., Ciccodicola, A., D'Urso, M., Woffendin, H., Jakins, T., Donnai, D., Stewart, H., Kenwrick, S. J., Aradhya, S., Yamagata, T., Levy, M., Lewis, R. A., & Nelson, D. L. (2000). Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature, 405(6785), 466-472. doi:10.1038/35013114
Sneed, S. R., & Weingeist, T. A. (1990). Management of siderosis bulbi due to a retained iron-containing intraocular foreign body. Ophthalmology, 97(3), 375-379. doi:10.1016/s0161-6420(90)32578-2
Swinney, C. C., Han, D. P., & Karth, P. A. (2015). Incontinentia Pigmenti: A Comprehensive Review and Update. Ophthalmic Surg Lasers Imaging Retina, 46(6), 650-657. doi:10.3928/23258160-20150610-09
Tanabe, J., Shirao, Y., Oda, N., & Kawasaki, K. (1992). Evaluation of retinal integrity in eyes with retained intraocular metallic foreign body by ERG and EOG. Doc Ophthalmol, 79(1), 71-78. doi:10.1007/BF00160133
Tessier-Lavigne, M., Mobbs, P., & Attwell, D. (1985). Lead and mercury toxicity and the rod light response. Invest Ophthalmol Vis Sci, 26(8), 1117-1123.
Wald, K. J., Mehta, M. C., Katsumi, O., Sabates, N. R., & Hirose, T. (1993). Retinal detachments in incontinentia pigmenti. Arch Ophthalmol, 111(5), 614-617. doi: 10.1001/archopht.1993.01090050048026
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Scandinavian Journal of Optometry and Visual Science
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.