One Eye on the Prize: The Impact of monocular vision on aiming responses
DOI:
https://doi.org/10.15626/sjovs.v18i1.4329Keywords:
Monocular vision, Binocular vision, Aiming, Visaul search, Online testingAbstract
The ability to move one's hand quickly and accurately towards a target is an essential skill that underpins many activities of daily living, such as writing or threading a needle. In-lab research has previously demonstrated that the time taken to complete an aiming task is proportional to task difficulty; however, the strength of this relationship appears to reduce as the quality of visual input becomes degraded (Wu et al, 2010). There is also evidence that when compared to full vision, monocular vision leads to a general increase in movement time during aiming tasks (Sheppard et al, 2021). Despite these valuable findings, logistical challenges (e.g. recruitment from hard-to-reach populations) make in-lab testing difficult or even impossible. These potential challenges could be overcome by introducing online tests if they are sufficiently sensitive to capture visual deficits accurately. The present study aimed to test (i) whether monocular vision was associated with increased response time and (ii) the feasibility of using simple, online tasks to probe the relationship between visual and motor function. Using a computer mouse or touchpad to move to targets as quickly as possible, 65 participants (aged 18–77) completed (i) a visual search task (moving to a 34 target embedded amongst a grid of distractors) and (ii) a basic visual-motor aiming task (moving to individual targets of varying size/distance). Participants completed both tasks online, either with full vision or monocular vision. Visual search time and aiming task response time increased significantly under monocular vision (≈1.8 s and ≈40 ms, respectively). These results suggest that a simple, online aiming task can be suitable for testing the effects of a visual deficit on motor function.
Metrics
References
Anwyl-Irvine, A., Dalmaijer, E. S., Hodges, N., & Evershed, J. K. (2021). Realistic precision and accuracy of online experiment platforms, web browsers, and devices. Behavior Research Methods, 53(4), 1407–1425. https://doi.org/10.3758/s13428-020-01501-5
Baker, D. H., Lygo, F. A., Meese, T. S., & Georgeson, M. A. (2018). Binocular summation revisited: Beyond √2. Psychological Bulletin, 144(11), 1186–1199. https://doi.org/10.1037/bul0000163
Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & van Steenbergen, H. (2015). QRTEngine: An easy solution for running online reaction time experiments using Qualtrics. Behavior Research Methods, 47 (4), 918–929. https://doi.org/10.3758/s13428-014-0530-7
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67, 1–48. https://doi.org/10.18637/jss.v067.i01
Bauldry, S. (2015). Structural Equation Modeling. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (Second Edition) (pp. 615–620). Elsevier. https://doi.org/10.1016/B978-0-08-097086-8.44055-9
Birch, E. E. (2013). Amblyopia and binocular vision. Progress in Retinal and Eye Research, 33, 67–84. https://doi.org/10.1016/j.preteyeres.2012.11.001
Black, A. A., Wood, J. M., Hoang, S., Thomas, E., & Webber, A. L. (2021). Impact of Amblyopia on Visual Attention and Visual Search in Children. Investigative Ophthalmology & Visual Science, 62(4), 15. https://doi.org/10.1167/iovs.62.4.15
Bolger, N., Zee, K. S., Rossignac-Milon, M., & Hassin, R. R. (2019). Causal processes in psychology are heterogeneous. Journal of Experimental Psychology. General, 148(4), 601–618. https://doi.org/10.1037/xge0000558
Campbell, F. W., & Green, D. G. (1965). Monocular versus binocular visual acuity. Nature, 208(5006), 191–192. https://doi.org/10.1038/208191a0
Coday, M. P., Warner, M. A., Jahrling, K. V., & Rubin, P. A. D. (2002). Acquired monocular vision: Functional consequences from the patient’s perspective. Ophthalmic Plastic and Reconstructive Surgery, 18(1), 56–63. https://doi.org/10.1097/00002341-200201000-00009
Coull, J., Weir, P. L., Tremblay, L., Weeks, D. J., & Elliott, D. (2000). Monocular and binocular vision in the control of goal-directed movement. Journal of Motor Behavior, 32(4), 347–360. https://doi.org/10.1080/00222890009601385
Crawford, J. D., Medendorp, W. P., & Marotta, J. J. (2004). Spatial transformations for eye–hand coordination. Journal of Neurophysiology, 92(1), 10–19. https://doi.org/10.1152/jn.00117.2004
Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044. https://doi.org/10.1037/a0020958
Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47 (6), 281–391.
Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67 (2), 103–112. https://doi.org/10.1037/h0045689
Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659. https://doi.org/10.1016/j.conb.2006.10.005
Frey, A., & Bosse, M.-L. (2018). Perceptual span, visual span, and visual attention span: Three potential ways to quantify limits on visual processing during reading. Visual Cognition, 26(6), 412–429. https://doi.org/10.1080/13506285.2018.1472163
Fukui, T., & Inui, T. (2013). Utilization of visual feedback of the hand according to target view availability in the online control of prehension movements. Human Movement Science, 32(4), 580–595. https://doi.org/10.1016/j.humov.2013.03.004
Gonzalez, D. A., & Niechwiej-Szwedo, E. (2016). The effects of monocular viewing on hand-eye coordination during sequential grasping and placing movements. Vision Research, 128, 30–38. https://doi.org/10.1016/j.visres.2016.08.006
González, E. G., Lillakas, L., Lam, A., Gallie, B. L., & Steinbach, M. J. (2013). Horizontal saccade dynamics after childhood monocular enucleation. Investigative Ophthalmology & Visual Science, 54(10), 6464–6471. https://doi.org/10.1167/iovs.13-12481
Kelly, K. R., Jost, R. M., De La Cruz, A., Dao, L., Beauchamp, C. L., Stager, D., & Birch, E. E. (2017). Slow reading in children with anisometropic amblyopia is associated with fixation instability and increased saccades. Journal of AAPOS: the official publication of the American Association for Pediatric Ophthalmology and Strabismus, 21(6), 447–451.e1. https://doi.org/10.1016/j.jaapos.2017.10.001
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
Li, J.-P. O., Liu, H., Ting, D. S., Jeon, S., Chan, R. P., Kim, J. E., Sim, D. A., Thomas, P. B., Lin, H., Chen, Y., Sakomoto, T., Loewenstein, A., Lam, D. S., Pasquale, L. R., Wong, T. Y., Lam, L. A., & Ting, D. S. (2021). Digital technology, tele-medicine and artificial intelligence in ophthalmology: A global perspective. Progress in Retinal and Eye Research, 82, 100900. https://doi.org/10.1016/j.preteyeres.2020.100900
Loftus, A., Servos, P., Goodale, M. A., Mendarozqueta, N., & Mon-Williams, M. (2004). When two eyes are better than one in prehension: Monocular viewing and end-point variance. Experimental Brain Research, 158(3), 317–327. https://doi.org/10.1007/s00221-004-1905-2
Lorah, J. (2018). Effect size measures for multilevel models: Definition, interpretation, and TIMSS example. Large-scale Assessments in Education, 6(1), 8. https://doi.org/10.1186/s40536-018-0061-2
Lyons, J., Hansen, S., Hurding, S., & Elliott, D. (2006). Optimizing rapid aiming behaviour: Movement kinematics depend on the cost of corrective modifications. Experimental Brain Research, 174(1), 95–100. https://doi.org/10.1007/s00221-006-0426-6
Maas, C., & Snijders, T. (2003). The multilevel approach to repeated measures for complete and incomplete data. Qual Quant, 37, 71–89. https://doi.org/10.1023/A:1022545930672
Mirza, G. D., Okka, M., Mirza, E., & Belviranlı, S. (2021). The causes and frequency of monocular and binocular blindness in adults applying to the health committee of a university hospital in Central Anatolia. Turkish Journal of Ophthalmology, 51(5), 282–287. https://doi.org/10.4274/tjo.galenos.2020.88120
Nagarajan, K., Luo, G., Narasimhan, M., & Satgunam, P. (2022). Children with amblyopia make more saccadic fixations when doing the visual search task. Investigative Ophthalmology & Visual Science, 63(13), 27. https://doi.org/10.1167/iovs.63.13.27
Niechwiej-Szwedo, E., Colpa, L., & Wong, A. (2023). The role of binocular vision in the control and development of visually guided upper limb movements. Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1869), 20210461. https://doi.org/10.1098/rstb.2021.0461
Niechwiej-Szwedo, E., Goltz, H. C., Chandrakumar, M., Hirji, Z. A., & Wong, A. M. F. (2010). Effects of anisometropic amblyopia on visuomotor behavior, I: Saccadic eye movements. Investigative Ophthalmology & Visual Science, 51(12), 6348–6354. https://doi.org/10.1167/iovs.10-5882
Ono, H. (1979). Axiomatic summary and deductions from Hering’s principles of visual direction. Perception & Psychophysics, 25(6), 473–477. https://doi.org/10.3758/BF03213825
Ono, H., & Mapp, A. P. (1995). A restatement and modification of Wells-Hering’s laws of visual direction. Perception, 24(2), 237–252. https://doi.org/10.1068/p240237
R Core Team. (2021). R: A language and environment for statistical computing. https://www.R-project.org/.
Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 25, 111–163. https://doi.org/10.2307/271063
Rombouts, S. A. R. B., Barkhof, F., Sprenger, M., Jaap Valk, & Scheltens, P. (1996). The functional basis of ocular dominance: Functional MRI (fMRI) findings. Neuroscience Letters, 221(1), 1–4. https://doi.org/10.1016/S0304-3940(96)13260-2
Sheppard, W. E. A., Dickerson, P., Baraas, R. C., Mon-Williams, M., Barrett, B. T., Wilkie, R. M., & Coats, R. O. (2021). Exploring the effects of degraded vision on sensorimotor performance. PLOS ONE, 16(11), e0258678. https://doi.org/10.1371/journal.pone.0258678
Tsirlin, I., Colpa, L., Goltz, H. C., & Wong, A. M. F. (2018). Visual search deficits in amblyopia. Journal of Vision, 18(4), 17. https://doi.org/10.1167/18.4.17
Vera, J., Molina, R., Cárdenas, D., Redondo, B., & Jiménez, R. (2020). Basketball free-throws performance depends on the integrity of binocular vision. European Journal of Sport Science, 20(3), 407–414. https://doi.org/10.1080/17461391.2019.1632385
Vincent, S. J., Collins, M. J., Read, S. A., & Carney, L. G. (2014). Myopic anisometropia: Ocular characteristics and aetiological considerations. Clinical and Experimental Optometry, 97 (4), 291–307. https://doi.org/10.1111/cxo.12171
Wagenmakers, E.-J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114(3), 830–841. https://doi.org/10.1037/0033-295X.114.3.830
Wu, J., Yang, J., & Honda, T. (2010). Fitts’ law holds for pointing movements under conditions of restricted visual feedback. Human Movement Science, 29(6), 882–892. https://doi.org/10.1016/j.humov.2010.03.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 William E. A. Sheppard, Richard M. Wilkie, Rigmor C. Baraas, Carlo Campagnoli, Rachel O. Coats

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.