The need for cycloplegic refraction in adolescents and young adults

Authors

DOI:

https://doi.org/10.15626/sjovs.v16i1.3481

Keywords:

Cycloplegia, Refractive error, Hyperopia, Myopia, Adolescents

Abstract

Cycloplegic refraction is considered the gold standard method when examining children and for ensuring accurate refractive error assessment within epidemiological studies. Recent reports underline that cycloplegia is equally important for ensuring accurate refractive error assessment in Chinese adolescents and young adults (Sun et al., 2018). The aim of this study was to assess whether cycloplegia is of equal importance for refractive error assessment in Norwegian adolescents and young adults. Non-cycloplegic and cycloplegic autorefraction (Huvitz HRK-8000A), and cycloplegic ocular biometry (IOLMaster 700), were undertaken in 215 Norwegian adolescents (101 males) aged 16–17 years. Topical cyclopentolate hydrochloride 1% was used for cycloplegia. Two years later, autorefraction and ocular biometry were repeated in 93 of the participants (34 males), both non-cycloplegic and cycloplegic. Non-cycloplegic spherical equivalent refractive errors (SER = sphere + 1⁄2 cylinder) were more myopic (less hyperopic) than cycloplegic SER in 93.6% of the participants (overall mean ±SD difference in SER: -0.59 ±0.50 D, 95% limit of agreement: -1.58 – 0.39 D). Refractive error classification by non-cycloplegic SER underestimated the hyperopia frequency (10.4% vs. 41.4%; SER ≥ +0.75 D) and overestimated the myopia frequency (12.1% vs. 10.7%; SER ≤ -0.75 D), as compared with refractive error classification by cycloplegic SER. Mean crystalline lens thickness decreased and mean anterior chamber depth increased with cycloplegia, with the largest changes in the hyperopes compared with the emmetropes and myopes (p ≤ 0.04). The individual differences between non-cycloplegic and cycloplegic SER varied by more than ±0.25 D between first and second visit for 31% of the participants. Accurate baseline measurements — as well as follow-up measurements — are imperative for deciding when and what to prescribe for myopic and hyperopic children, adolescents, and young adults. The results here confirm that cycloplegia is necessary to ensure accurate measurement of refractive errors in Norwegian adolescents and young adults.

Metrics

Metrics Loading ...

References

AOA Evidence-Based Optometry Guideline Development Group. (2017). Evidence-based clinical practice guideline: Comprehensive pediatric eye and vision examination (Report). https://www.aoa.org/practice/clinical-guidelines/clinical-practice-guidelines?sso=y

Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 DOI: https://doi.org/10.18637/jss.v067.i01

Duane, A. (1922). Studies in monocular and binocular accommodation, with their clinical application. Transactions of the American Ophthalmological Society, 20, 132–57. DOI: https://doi.org/10.1016/S0002-9394(22)90793-7

Fledelius, H. C. (2000). Myopia profile in Copenhagen medical students 1996-98. Refractive stability over a century is suggested. Acta Ophthalmologica Scandinavica, 78(5), 501–5. https://doi.org/10.1034/j.1600-0420.2000.078005501.x DOI: https://doi.org/10.1034/j.1600-0420.2000.078005501.x

Fotouhi, A., Morgan, I. G., Iribarren, R., Khabazkhoob, M., & Hashemi, H. (2012). Validity of noncycloplegic refraction in the assessment of refractive errors: The Tehran Eye Study. Acta Ophthalmologica, 90(4), 380–6. https://doi.org/10.1111/j.1755-3768.2010.01983.x DOI: https://doi.org/10.1111/j.1755-3768.2010.01983.x

Ha, A., Kim, S. J., Shim, S. R., Kim, Y. K., & Jung, J. H. (2022). Efficacy and safety of 8 atropine concentrations for myopia control in children: A network meta-analysis. Ophthalmology, 129(3), 322–333. https://doi.org/10.1016/j.ophtha.2021.10.016 DOI: https://doi.org/10.1016/j.ophtha.2021.10.016

Hagen, L. A., Gilson, S. J., Akram, M. N., & Baraas, R. C. (2019). Emmetropia is maintained despite continued eye growth from 16 to 18 years of age. Investigative Ophthalmology & Visual Science, 60(13), 4178–4186. https://doi.org/10.1167/iovs.19-27289 DOI: https://doi.org/10.1167/iovs.19-27289

Hagen, L. A., Gjelle, J. V. B., Arnegard, S., Pedersen, H. R., Gilson, S. J., & Baraas, R. C. (2018). Prevalence and possible factors of myopia in Norwegian adolescents. Scientific Reports, 8(1), 13479. https://doi.org/10.1038/s41598-018-31790-y DOI: https://doi.org/10.1038/s41598-018-31790-y

Hashemi, H., Asharlous, A., Khabazkhoob, M., Iribarren, R., Khosravi, A., Yekta, A., Emamian, M. H., & Fotouhi, A. (2020). The effect of cyclopentolate on ocular biometric components. Optometry and Vision Science, 97(6), 440–447. https://doi.org/10.1097/opx.0000000000001524 DOI: https://doi.org/10.1097/OPX.0000000000001524

Jacobsen, N., Jensen, H., & Goldschmidt, E. (2008). Does the level of physical activity in university students influence development and progression of myopia? A 2-year prospective cohort study. Investigative Ophthalmology & Visual Science, 49(4), 1322–7. https://doi.org/10.1167/iovs.07-1144 DOI: https://doi.org/10.1167/iovs.07-1144

Jonas, J. B., Ang, M., Cho, P., Guggenheim, J. A., He, M. G., Jong, M., Logan, N. S., Liu, M., Morgan, I., Ohno-Matsui, K., Pärssinen, O., Resnikoff, S., Sankaridurg, P., Saw, S. M., Smith, 3., E. L., Tan, D. T. H., Walline, J. J., Wildsoet, C. F., Wu, P. C., ... Wolffsohn, J. S. (2021). IMI prevention of myopia and its progression. Investigative Ophthalmology & Visual Science, 62(5), 6. https://doi.org/10.1167/iovs.62.5.6 DOI: https://doi.org/10.1167/iovs.62.5.6

Kinge, B., & Midelfart, A. (1999). Refractive changes among Norwegian university students–a three-year longitudinal study. Acta Ophthalmologica Scandinavica, 77(3), 302–5. https://doi.org/10.1034/j.1600-0420.1999.770311.x DOI: https://doi.org/10.1034/j.1600-0420.1999.770311.x

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13 DOI: https://doi.org/10.18637/jss.v082.i13

Liu, Y. M., & Xie, P. (2016). The safety of orthokeratology–a systematic review. Eye Contact Lens, 42(1), 35–42. https://doi.org/10.1097/icl.0000000000000219 DOI: https://doi.org/10.1097/ICL.0000000000000219

Major, E., Dutson, T., & Moshirfar, M. (2020). Cycloplegia in children: An optometrist’s perspective. Clinical Optometry, 12, 129–133. https://doi.org/10.2147/opto.S217645 DOI: https://doi.org/10.2147/OPTO.S217645

Manny, R. E., Fern, K. D., Zervas, H. J., Cline, G. E., Scott, S. K., White, J. M., & Pass, A. F. (1993). 1% cyclopentolate hydrochloride: Another look at the time course of cycloplegia using an objective measure of the accommodative response. Optometry and Vision Science, 70(8), 651–65. https://doi.org/10.1097/00006324-199308000-00013 DOI: https://doi.org/10.1097/00006324-199308000-00013

Mimouni, M., Zoller, L., Horowitz, J., Wygnanski-Jaffe, T., Morad, Y., & Mezer, E. (2016). Cycloplegic autorefraction in young adults: Is it mandatory? Graefe’s Archive for Clinical and Experimental Ophthalmology, 254(2), 395–8. https://doi.org/10.1007/s00417-015-3246-1 DOI: https://doi.org/10.1007/s00417-015-3246-1

Morgan, I. G., Iribarren, R., Fotouhi, A., & Grzybowski, A. (2015). Cycloplegic refraction is the gold standard for epidemiological studies. Acta Ophthalmologica, 93(6), 581–5. https://doi.org/10.1111/aos.12642 DOI: https://doi.org/10.1111/aos.12642

Morton, M., Lee, L., & Morjaria, P. (2019). Practical tips for managing myopia. Community Eye Health, 32(105), 17–18.

Mutti, D. O., Mitchell, G. L., Sinnott, L. T., Jones-Jordan, L. A., Moeschberger, M. L., Cotter, S. A., Kleinstein, R. N., Manny, R. E., Twelker, J. D., & Zadnik, K. (2012). Corneal and crystalline lens dimensions before and after myopia onset. Optometry and Vision Science, 89(3), 251–62. https://doi.org/10.1097/OPX.0b013e3182418213 DOI: https://doi.org/10.1097/OPX.0b013e3182418213

Norges Optikerforbund. (2021). Kliniske retningslinjer: Undersøkelse av barn (Report). https://www.optikerne.no/getFile.php?ID=801bff5c805199524a8f1338c d44290c52045080168594dcfd25ad2b418134e44095f064

Pei, R., Liu, Z., Rong, H., Zhao, L., Du, B., Jin, N., Zhang, H., Wang, B., Pang, Y., & Wei, R. (2021). A randomized clinical trial using cyclopentolate and tropicamide to compare cycloplegic refraction in Chinese young adults with dark irises. BMC Ophthalmology, 21(1), 256. https://doi.org/10.1186/s12886-021-02001-6 DOI: https://doi.org/10.1186/s12886-021-02001-6

Polling, J. R., Tan, E., Driessen, S., Loudon, S. E., Wong, H. L., van der Schans, A., Tideman, J. W. L., & Klaver, C. C. W. (2020). A 3-year follow-up study of atropine treatment for progressive myopia in Europeans. Eye, 34(11), 2020–2028. https://doi.org/10.1038/s41433-020-1122-7 DOI: https://doi.org/10.1038/s41433-020-1122-7

R Core Team. (2021). R: A language and environment for statistical computing. https://www.R-project.org

Rozema, J., Dankert, S., Iribarren, R., Lanca, C., & Saw, S. M. (2019). Axial growth and lens power loss at myopia onset in Singaporean children. Investigative Ophthalmology & Visual Science, 60(8), 3091–3099. https://doi.org/10.1167/iovs.18-26247 DOI: https://doi.org/10.1167/iovs.18-26247

Sanfilippo, P. G., Chu, B. S., Bigault, O., Kearns, L. S., Boon, M. Y., Young, T. L., Hammond, C. J., Hewitt, A. W., & Mackey, D. A. (2014). What is the appropriate age cut-off for cycloplegia in refraction? Acta Ophthalmologica, 92(6), e458–62. https://doi.org/10.1111/aos.12388 DOI: https://doi.org/10.1111/aos.12388

Sankaridurg, P., He, X., Naduvilath, T., Lv, M., Ho, A., Smith, I., E., Erickson, P., Zhu, J., Zou, H., & Xu, X. (2017). Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmologica, 95(7), e633–e640. https://doi.org/10.1111/aos.13569 DOI: https://doi.org/10.1111/aos.13569

Sha, J., Tilia, D., Diec, J., Fedtke, C., Yeotikar, N., Jong, M., Thomas, V., & Bakaraju, R. C. (2018). Visual performance of myopia control soft contact lenses in non-presbyopic myopes. Clinical Optometry, 10, 75–86. https://doi.org/10.2147/opto.S167297 DOI: https://doi.org/10.2147/OPTO.S167297

Spillmann, L. (2020). Stopping the rise of myopia in Asia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258(5), 943–959. https://doi.org/10.1007/s00417-019-04555-0 DOI: https://doi.org/10.1007/s00417-019-04555-0

Sun, Y. Y., Wei, S. F., Li, S. M., Hu, J. P., Yang, X. H., Cao, K., Lin, C. X., Du, J. L., Guo, J. Y., Li, H., Liu, L. R., Morgan, I. G., & Wang, N. L. (2018). Cycloplegic refraction by 1% cyclopentolate in young adults: Is it the gold standard? The Anyang University Students Eye Study (AUSES). British Journal of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2018-312199 DOI: https://doi.org/10.1136/bjophthalmol-2018-312199

Weng, R. Y. S. (2020). Cycloplegic refraction in managing myopia. https://reviewofmm.com/cycloplegic-refraction-in-managing-myopia/

World Council of Optometry. (2021). World council of optometry resolution: The standard of care for myopia management by optometrists (Report). https://worldcouncilofoptometry.info/resolution-the-standard-of-care-for-myopia-management-by-optometrists/

Yoo, S. G., Cho, M. J., Kim, U. S., & Baek, S. H. (2017). Cycloplegic refraction in hyperopic children: Effectiveness of a 0.5% tropicamide and 0.5% phenylephrine addition to 1% cyclopentolate regimen. Korean Journal Ophthalmology, 31(3), 249–256. https://doi.org/10.3341/kjo.2016.0007 DOI: https://doi.org/10.3341/kjo.2016.0007

Downloads

Published

2023-07-28

How to Cite

Hagen, L. A., Gilson, S. J., & Baraas, R. C. (2023). The need for cycloplegic refraction in adolescents and young adults. Scandinavian Journal of Optometry and Visual Science, 16(1), 1–7. https://doi.org/10.15626/sjovs.v16i1.3481

Issue

Section

Scientific Article

Most read articles by the same author(s)