Non-cycloplegic refraction cannot replace cycloplegic refraction in primary school children.

Authors

  • Cecilie Onshuus Bjørset National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0001-8847-3299
  • Hilde R. Pedersen National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0003-3946-6687
  • Gro O. Synstelien National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0003-3056-0845
  • Stuart J. Gilson National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0001-6370-7191
  • Lene A. Hagen National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0002-9017-4519
  • Trine Langaas National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway
  • Hanne-Mari Schiøtz Thorud National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0002-4045-0909
  • Gro Horgen Vikesdal National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0001-8879-1131
  • Rigmor C. Baraas National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0003-3259-7617
  • Ellen Svarverud National Centre for Optics, Vision and Eye Care, Department of Optometry, Radiography and Lighting Design, University of South-Eastern Norway, Kongsberg, Norway https://orcid.org/0000-0002-0768-9010

DOI:

https://doi.org/10.15626/sjovs.v15i2.3645

Keywords:

Children, cycloplegic autorefraction, non-cycloplegic autorefraction, non-cycloplegic retinoscopy, cyclopentolate

Abstract

The purpose was to assess the differences in spherical equivalent refractive error (SER) between cycloplegic autorefraction (1% cyclopentolate), non-cycloplegic autorefraction, and non-cycloplegic retinoscopy measured by experienced optometrists in a population with a high prevalence of hyperopia. Refractive error was measured with the three methods in 111 children aged 7–8 and 10–11 years. Bland-Altman analysis was used to assess the mean of the differences (MD) and the 95% limits of agreement (LoA) between cycloplegic autorefraction and the two non-cycloplegic methods. A mixed effects model was used to investigate the differences between methods by refractive group. Cycloplegic autorefraction gave a significantly more positive SER than both non-cycloplegic retinoscopy (MD = 0.47 D, LoA = -0.59–1.53 D) and non-cycloplegic autorefraction (MD = 0.92 D, LoA of -1.12 to 2.95 D). The mean differences in SER increased with increasing degree of hyperopia [F(4, 215) = 12.6, p < .001], both when comparing cycloplegic refraction with non-cycloplegic retinoscopy and non-cycloplegic autorefraction.

Non-cycloplegic retinoscopy and autorefraction result in significantly less positive SER than cycloplegic autorefraction. The wide confidence intervals for the mean difference and limits of agreement are clinically unacceptable and the methods cannot be used interchangeably. Consequently, refraction without cycloplegia would cause misdiagnosis in some children. Even if non-cycloplegic retinoscopy results in narrower limits of agreement, the risk of misdiagnosis is not eliminated by being experienced in carrying out retinoscopy. We show that it is essential to use cycloplegia when refracting children, and in particular to ensure that no hyperope goes undetected.

References

American Optometry Association. (2017). Comprehensive paediatric eye and vision examination. https://aoa.uberflip.com/i/807465-cpg-pediatric-eye-and-vision-examination/13?m4=

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1), 1–48. https://doi.org/10.18637/jss.v067.i01

Bruce, A., Kelly, B., Chambers, B., Barrett, B. T., Bloj, M., Bradbury, J., & Shel- don, T. A. (2018). The effect of adherence to spectacle wear on early developing literacy: A longitudinal study based in a large multiethnic city, Bradford, UK. BMJ Open, 8(6), e021277. https://doi.org/10.1136/bmjopen-2017-021277

Chan, O. Y., & Edwards, M. (1994). Comparison of cycloplegic and noncycloplegic retinoscopy in Chinese pre-school children. Optometry and Vision Science, 71(5), 312–8. https://doi.org/10.1097/00006324-199405000-00002

Choong, Y. F., Chen, A. H., & Goh, P. P. (2006). A comparison of autorefraction and subjective refraction with and without cycloplegia in primary school children. American Journal of Ophthalmology, 142(1), 68–74. https://doi.org/10.1016/j.ajo. 2006.01.084

Demir, P., Baskaran, K., Theagarayan, B., Gierow, P., Sankaridurg, P., & Macedo, A. F. (2021). Refractive error, axial length, environmental and hereditary factors associated with myopia in Swedish children. Clinical and Experimental Optometry, 104(5), 595–601. https://doi.org/10.1080/08164622.2021.1878833

Doherty, S. E., Doyle, L. A., McCullough, S. J., & Saunders, K. J. (2019). Com- parison of retinoscopy results with and without 1% Cyclopentolate in school-aged children. Ophthalmic and Physiological Optics, 39(4), 272–281. https://doi.org/10.1111/opo.12629

Fotedar, R., Rochtchina, E., Morgan, I., Wang, J. J., Mitchell, P., & Rose, K. A. (2007). Necessity of cycloplegia for assessing refractive error in 12-year-old chil- dren: A population-based study. American Journal of Ophthalmology, 144(2), 307–9. https://doi.org/10.1016/j.ajo.2007.03.041

Fotouhi, A., Morgan, I. G., Iribarren, R., Khabazkhoob, M., & Hashemi, H. (2012). Validity of noncycloplegic refraction in the assessment of refractive errors: The Tehran Eye Study. Acta Ophthalmologica, 90(4), 380–6. https://doi.org/10.1111/j. 1755-3768.2010.01983.x

Hagen, L. A., Gilson, S. J., & Baraas, R. C. (2020). Vision status and reading test results in Norwegian adolescents. Scandinavian Journal of Optometry and Visual Science, 13(2), 2–7. https://doi.org/10.5384/sjovs.vol13i2p2-7

Hagen, L. A., Gjelle, J. V. B., Arnegard, S., Pedersen, H. R., Gilson, S. J., & Baraas, R. C. (2018). Prevalence and possible factors of myopia in Norwegian adolescents. Scientific Reports, 8(1), 13479. https://doi.org/10.1038/s41598-018-31790-y

Hashemi, H., Khabazkhoob, M., Asharlous, A., Soroush, S., Yekta, A., Dadbin, N., & Fotouhi, A. (2016). Cycloplegic autorefraction versus subjective refraction: The Tehran Eye Study. British Journal of Ophthalmology, 100 (8), 1122–7. https://doi.org/10.1136/bjophthalmol-2015-307871

Hashemi, H., Khabazkhoob, M., Asharlous, A., Yekta, A., Emamian, M. H., & Fo- touhi, A. (2018). Overestimation of hyperopia with autorefraction compared with retinoscopy under cycloplegia in school-age children. British Journal of Ophthalmology, 102(12), 1717–1722. https://doi.org/10.1136/bjophthalmol-2017-311594

Hirsch, M. J. (1956). The variability of retinoscopic measurements when applied to large groups of children under visual screening conditions. Optometry and Vision Science, 33(8), 410–416. https://doi.org/10.1097/00006324-195608000-00003

Kirschen, D., & Isenberg, S. J. (2014). The effectiveness of an autorefractor with eye-tracking capability in pediatric patients. Journal of the AAPOS, 18(3), 217–21. https://doi.org/10.1016/j.jaapos.2013.12.019

Kulp, M. T., Ciner, E., Maguire, M., Moore, B., Pentimonti, J., Pistilli, M., Cy- ert, L., Candy, T. R., Quinn, G., & Ying, G. S. (2016). Uncorrected hyperopia and preschool early literacy: Results of the Vision in Preschoolers-Hyperopia in Preschoolers (VIP-HIP) Study. Ophthalmology, 123(4), 681–9. https://doi.org/10. 1016/j.ophtha.2015.11.023

Ma, X., Zhou, Z., Yi, H., Pang, X., Shi, Y., Chen, Q., Meltzer, M. E., le Cessie, S., He, M., Rozelle, S., Liu, Y., & Congdon, N. (2014). Effect of providing free glasses on children’s educational outcomes in China: Cluster randomized controlled trial. BMJ, 349, g5740. https://doi.org/10.1136/bmj.g5740

Manny, R. E., Fern, K. D., Zervas, H. J., Cline, G. E., Scott, S. K., White, J. M., & Pass, A. F. (1993). 1% Cyclopentolate hydrochloride: Another look at the time course of cycloplegia using an objective measure of the accommodative response. Optometry and Vision Science, 70(8), 651–665. https://doi.org/10.1097/00006324-199308000-00013

Mavi, S., Chan, V. F., Virgili, G., Biagini, I., Congdon, N., Piyasena, P., Yong, A. C., Ciner, E. B., Kulp, M. T., Candy, T. R., Collins, M., Bastawrous, A., Morjaria, P., Watts, E., Masiwa, L. E., Kumora, C., Moore, B., & Little, J. A. (2022). The impact of hyperopia on academic performance among children: A systematic review. The Asia-Pacific Journal of Ophthalmology, 11(1), 36–51. https://doi.org/10.1097/APO.0000000000000492

McCullough, S. J., Doyle, L., & Saunders, K. J. (2017). Intra- and inter- examiner repeatability of cycloplegic retinoscopy among young children. Ophthalmic and Physiological Optics, 37 (1), 16–23. https://doi.org/10.1111/opo.12341

Morgan, I. G., Iribarren, R., Fotouhi, A., & Grzybowski, A. (2015). Cycloplegic refraction is the gold standard for epidemiological studies. Acta Ophthalmologica, 93(6), 581–5. https://doi.org/10.1111/aos.12642

Neitzel, A. J., Wolf, B., Guo, X., Shakarchi, A. F., Madden, N. A., Repka, M. X., Friedman, D. S., & Collins, M. E. (2021). Effect of a randomized interventional school-based vision program on academic performance of students in grades 3 to 7: A cluster randomized clinical trial. JAMA Ophthalmology, 139(10), 1104–1114. https://doi.org/10.1001/jamaophthalmol.2021.3544

Nilsen, N. G., Gilson, S. J., Pedersen, H. R., Hagen, L. A., Knoblauch, K., & Baraas, R. C. (2022). Seasonal variation in diurnal rhythms of the human eye: Implications for continuing ocular growth in adolescents and young adults. Investigative Ophthalmology & Visual Science, 63(11), 20. https://doi.org/10.1167/iovs.63.11.20

R Core Team. (2021). R: A language and environment for statistical computing.

https://www.R-project.org/

Sandfeld, L., Weihrauch, H., Tubaek, G., & Mortzos, P. (2018). Ophthalmological data on 4.5- to 7-year-old Danish children. Acta Ophthalmologica, 96(4), 379–383. https://doi.org/10.1111/aos.13650

Sankaridurg, P., He, X., Naduvilath, T., Lv, M., Ho, A., Smith, 3., E., Erickson, P., Zhu, J., Zou, H., & Xu, X. (2017). Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmolog- ica, 95(7), e633–e640. https://doi.org/10.1111/aos.13569

Sun, Y. Y., Wei, S. F., Li, S. M., Hu, J. P., Yang, X. H., Cao, K., Lin, C. X., Du, J. L., Guo, J. Y., Li, H., Liu, L. R., Morgan, I. G., & Wang, N. L. (2018). Cycloplegic refraction by 1% Cyclopentolate in young adults: Is it the gold standard? The Anyang University Students Eye Study (AUSES). British Journal of Ophthalmology, 103(5), 654–658. https://doi.org/10.1136/bjophthalmol-2018-312199

Thorud, H. S., Aurjord, R., & Falkenberg, H. K. (2021). Headache and muscu- loskeletal pain in school children are associated with uncorrected vision problems and need for glasses: A case-control study. Scientific Reports, 11(1), 2093. https://doi.org/10.1038/s41598-021-81497-w

Williams, W. R., Latif, A. H., Hannington, L., & Watkins, D. R. (2005). Hyperopia and educational attainment in a primary school cohort. Archives of Disease in Childhood, 90(2), 150–3. https://doi.org/10.1136/adc.2003.046755

Wilson, L. B., Melia, M., Kraker, R. T., VanderVeen, D. K., Hutchinson, A. K., Pineles, S. L., Galvin, J. A., & Lambert, S. R. (2020). Accuracy of autorefraction in children: A report by the American Academy of Ophthalmology. Ophthalmology, 127 (9), 1259–1267. https://doi.org/10.1016/j.ophtha.2020.03.004

Wilson, S., Ctori, I., Shah, R., Suttle, C., & Conway, M. L. (2022). Systematic review and meta-analysis on the agreement of non-cycloplegic and cycloplegic refraction in children. Ophthalmic and Physiological Optics, 42(6), 1276–1288. https://doi.org/10.1111/opo.13022

Zadnik, K., Mutti, D. O., & Adams, A. J. (1992). The repeatability of measurement of the ocular components. Investigative Ophthalmology & Visual Science, 33(7), 2325–33.

Zhao, J., Mao, J., Luo, R., Li, F., Pokharel, G. P., & Ellwein, L. B. (2004). Accuracy of noncycloplegic autorefraction in school-age children in China. Optometry and Vision Science, 81(1), 49–55. https://doi.org/10.1097/00006324-200401000-00010

Downloads

Published

2022-12-20

How to Cite

Bjørset , C. O. ., Pedersen, H. R., Synstelien, G. O., Gilson, S. J. ., Hagen, L. A. ., Langaas, T., Thorud, H.-M. S., Vikesdal, G. H., Baraas, R. C., & Svarverud, E. (2022). Non-cycloplegic refraction cannot replace cycloplegic refraction in primary school children. Scandinavian Journal of Optometry and Visual Science, 15(2), 1–6. https://doi.org/10.15626/sjovs.v15i2.3645

Issue

Section

Scientific Article

Most read articles by the same author(s)

1 2 > >>